首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-complementary DNA decamer duplex d(CTGAATTCAG)2 and its modified counterpart d(CTGA[2AP]TTCAG)2, where the innermost adenine (6-aminopurine) has been replaced with the fluorescent analogue 2-aminopurine (2AP), have been studied by fluorescence and NMR spectroscopy and simulated by molecular dynamics. Both decamers are recognized and cleaved by the EcoRI restriction endonuclease. 2D NMR results show that both decamers have a standard B-type conformation below 20 degrees C, though a disturbance exists to the 5' side of the 2AP site which may originate from increased local mobility. The fluorescence and fluorescence anisotropy decays of both decamers, as well as the one containing 2AP in only one chain, were studied as a function of temperature. The data show that the 2AP base exists in a temperature-dependent distribution of states and shows rapid motions, suggesting interconversion among these states on a time scale of about 10(-10) s. The integrated fluorescence of the decamer with 2AP in both chains shows a large increase around the helix melting temperature whereas the decamer with one 2AP shows only a mild increase, showing that the mixed helix has a different structural transition as sensed by the 2AP base. The data suggest a model of conformational states which have distinct fluorescence decay times. The various states may differ in the degree of base stacking. Fluctuations in the degree of stacking of the A or 2AP base are supported by molecular dynamics simulations, which additionally show that the 2AP-T or A-T base pair hydrogen bonds remain intact during these large motions.  相似文献   

2.
A combination of calorimetric and spectroscopic techniques was used to evaluate the thermodynamic behavior of a set of DNA hairpins with the sequence d(GCGCTnGCGC), where n = 3, 5 and 7, and the interaction of each hairpin with ethidium. All three hairpins melt in two-state monomolecular transitions, with tm's ranging from 79.1 degrees C (T3) to 57.5 degrees C (T7), and transition enthalpies of approximately 38.5 kcal mol-1. Standard thermodynamic profiles at 20 degrees C reveal that the lower stability of the T5 and T7 hairpins corresponds to a delta G degree term of +0.5 kcal mol-1 per thymine residue, due to the entropic ordering of the thymine loops and uptake of counterions. Deconvolution of the ethidium-hairpin calorimetric titration curves indicate two sets of binding sites that correspond to one ligand in the stem with binding affinity, Kb, of approximately 1.8 x 10(6) M-1, and two ligands in the loops with Kb of approximately 4.3 x 10(4) M-1. However, the binding enthalpy, delta Hb, ranges from -8.6 (T3) to -11.6 kcal mol-1 (T7) for the stem site, and -6.6 (T3) to -12.7 kcal mol-1 (T7) for the loop site. Relative to the T3 hairpin, we obtained an overall thermodynamic contribution (per dT residue) of delta delta Hb = delta(T delta Sb) = -0.7(5) kcal mol-1 for the stem sites and delta delta Hb = delta(T delta Sb) = -1.5 kcal mol-1 for the loop sites. Therefore, the induced structural perturbations of ethidium binding results in a differential compensation of favorable stacking interactions with the unfavorable ordering of the ligands.  相似文献   

3.
The solution structure of the hairpin formed by d(CGCGTTGTTCGCG) has been examined in detail by a wide variety of NMR techniques. The hairpin was characterized by proton NMR to obtain interproton distances and torsion angle information. An energy-minimized model was constructed that is consistent with these data. The hairpin consists of a B-DNA stem of four C-G base pairs and a loop region consisting of five unpaired bases. Three bases in the 5' of the loop are stacked over the 3' end of the stem, and the other two bases in the 3' of the loop are stacked over the 5' end of the stem. The phosphorus NMR spectrum revealed a phosphate in the stem region with an unusual conformation, and two phosphates, P9 and P10, were found to undergo intermediate exchange between conformations. The hairpin was also synthesized with a carbon-13 label in each of the thymidine C6 carbons, and relaxation measurements were performed to determine the extent of internal motions in the loop region. The loop bases are more flexible than the stem bases and exhibit subnanosecond motions with an amplitude corresponding to diffusion in a cone of approximately 30 degrees.  相似文献   

4.
The DNA decamers, d(CAACCCGTTG) and d(CAACGGGTTG) were studied in solution by proton and heteronuclear NMR. Under appropriate conditions of pH, temperature, salt concentration and DNA concentration, both decamers form hairpin conformations with similar stabilities [Avizonis and Kearns (1995) Biopolymers, 35, 187-200]. Both decamers adopt mini-hairpin loops, where the first and last four nucleotides are involved in Watson-Crick hydrogen bonding and the central two nucleotides, CC or GG respectively, form the loop. Through the use of proton-proton, proton-phosphorus and natural abundance proton-carbon NMR experiments, backbone torsion angles (beta, gamma and epsilon), sugar puckers and interproton distances were measured. The nucleotides forming the loops of these decamers were found to stack upon one another in an L1 type of loop conformation. Both show gamma tr and unusual beta torsion angles in the loop-closing nucleotide G7, as expected for mini-hairpin loop formation. Our results indicate that the beta and epsilon torsion angles of the fifth and sixth nucleotides that form the loop and the loop-closing nucleotide G7 are not in the standard trans conformation as found in B-DNA. Although the loop structures calculated from NMR-derived constraints are not well defined, the stacking of the bases in the two different hairpins is different. This difference in the base stacking of the loop may provide an explanation as to why the cytosine-containing hairpin is thermodynamically more stable than the guanine-containing hairpin.  相似文献   

5.
F Seela  A Kehne 《Biochemistry》1987,26(8):2232-2238
Octa- and dodecanucleotides containing 2'-deoxytubericidin within the endodeoxyribonuclease EcoRI recognition fragment d(GAATTC) have been prepared by solid-phase synthesis. Whereas octamers as well as dodecamers with a "random" flanking region formed duplexes in aqueous solution, the dodecamer d(CGCGAATTCGCG) and isosterically modified oligomers thereof showed a strong tendency of hairpin formation. Due to this, cleavage with the endodeoxyribonuclease EcoRI was strongly decreased. In contrast, d(GTAGAATTCTAC) was easily cleaved by the enzyme. Single replacement of one of the dA residues by 2'-deoxytubercidin within the recognition sequence decreased the cleavage velocity but retained specificity. Twofold modification prevents cleavage of the oligomer. This implies that both N-7 purine nitrogens are proton acceptor sites for the endodeoxyribonuclease EcoRI.  相似文献   

6.
Three-dimensional (3D) structure of a hairpin DNA d-CTAGAGGATCCTTTUGGATCCT (22mer; abbreviated as U4-hairpin), which has a uracil nucleotide unit at the fourth position from the 5' end of the tetra-loop has been solved by NMR spectroscopy. The(1)H resonances of this hairpin have been assigned almost completely. NMR restrained molecular dynamics and energy minimisation procedures have been used to describe the 3D structure of the U4 hairpin. This study establishes that the stem of the hairpin adopts a right handed B-DNA conformation while the T(12)and U(15)nucleotide stack upon 3' and 5' ends of the stem, respectively. Further, T(14)stacks upon both T(12)and U(15)while T(13)partially stacks upon T(14). Very weak stacking interaction is observed between T(13)and T(12). All the individual nucleotide bases adopt ' anti ' conformation with respect to their sugar moiety. The turning phosphate in the loop is located between T(13)and T(14). The stereochemistry of U(15)mimics the situation where uracil would stack in a B-DNA conformation. This could be the reason as to why the U4-hairpin is found to be the best substrate for its interaction with uracil DNA glycosylase (UDG) compared to the other substrates in which the uracil is at the first, second and third positions of the tetra-loop from its 5' end, as reported previously.  相似文献   

7.
Effects of the universal base 5-nitroindole on the thermodynamic stability of DNA hairpins having a 6 bp stem and four base loops were investigated by optical absorbance and differential scanning calorimetry techniques. Melting studies were conducted in buffer containing 115 mM Na(+). Five different modified versions of DNA hairpins containing a 5-nitroindole base or bases substituted at different positions in the stem and loop regions were examined. Thermo-dynamic parameters of the melting transitions estimated from a two-state analysis of optical melting curves and measured directly by calorimetry revealed that the presence of 5-nitroindole bases in the duplex stem or loop regions of short DNA hairpins significantly affects both their enthalpic and entropic melting components in a compensating manner, while the transition free energy varies linearly with the transition temperature. The calorimetrically determined enthalpy and entropy values of the modified hairpins were considerably smaller (43-53%) than the two-state optical parameters, suggesting that solvent effects may be significant in the melting processes of these hairpins. Results of circular dichroism measurements also revealed slight differences between the modified hairpins and the control in both the duplex and melted states, suggesting subtle structural differences between the control and DNA hairpins containing a 5-nitroindole base or bases.  相似文献   

8.
A complete understanding of the sequence-specific interaction between the EcoRI restriction endonuclease and its DNA substrate requires identification of all contacts between the enzyme and substrate, and evaluation of their significance. We have searched for possible contacts adjacent to the recognition site, GAATTC, by using a series of substrates with differing lengths of flanking sequence. Each substrate is a duplex of non-self-complementary oligodeoxyribonucleotides in which the recognition site is flanked by six base pairs on one side and from zero to three base pairs on the other. Steady-state kinetic values were determined for the cleavage of each strand of these duplexes. A series of substrates in which the length of flanking sequence was varied on both sides of the hexamer was also examined. The enzyme cleaved both strands of each of the substrates. Decreasing the flanking sequence to fewer than three base pairs on one side of the recognition site induced an asymmetry in the rates of cleavage of the two strands. The scissile bond nearest the shortening sequence was hydrolyzed with increasing rapidity as base pairs were successively removed. Taken together, the KM and kcat values obtained may be interpreted to indicate the relative importance of several likely enzyme-substrate contacts located outside the canonical hexameric recognition site.  相似文献   

9.
V Thielking  J Alves  A Fliess  G Maass  A Pingoud 《Biochemistry》1990,29(19):4682-4691
We have synthesized a series of 18 nonpalindromic oligodeoxynucleotides that carry all possible base changes within the recognition sequence of EcoRI. These single strands can be combined with their complementary single strands to obtain all possible EcoRI sequences (left), or they can be combined with a single strand containing the canonical sequence to obtain double strands with all possible mismatches within the recognition sequence (right): (sequence; see text) The rate of phosphodiester bond cleavage of these oligodeoxynucleotides by EcoRI was determined in single-turnover experiments under normal buffer conditions in order to find out to what extent the canonical recognition site can be distorted and yet serve as a substrate for EcoRI. Our results show that oligodeoxynucleotides containing mismatch base pairs are in general more readily attacked by EcoRI than oligodeoxynucleotides containing EcoRI sites and that the rates of cleavage of the two complementary strands of degenerate oligodeoxynucleotides are quite different. We have also determined the affinities of these oligodeoxynucleotides to EcoRI. They are higher for oligodeoxynucleotides carrying a mismatch within the EcoRI recognition site than for oligodeoxynucleotides containing an EcoRI site but otherwise do not correlate with the rate with which these oligodeoxynucleotides are cleaved by EcoRI. Our results allow details to be given for the probability of EcoRI making mistakes in cleaving DNA not only in its recognition sequence but also in sequences closely related to it. Due to the fact that the rates of cleavage in the two strands of a degenerate sequence generally are widely different, these mistakes are most likely not occurring in vivo, since nicked intermediates can be repaired by DNA ligase.  相似文献   

10.
The resonances of the imino protons and all of the non-exchangeable protons (except for H5'/H5') of d(CGCAAAAAAGCG)d(CGCTTTTTTGCG) have been assigned by means of one- and two-dimensional NMR spectroscopies. Qualitative analyses showed that the overall structure is of the B-form, but local conformational deviations exist. The NOEs between the imino protons of thymines and H2 of adenines suggest that the A-T base pairs are propeller-twisted to almost the same degree as in crystals. A remarkable chemical shift of H1' was observed for the residue located just before the oligo(dA)oligo(dT) tract, suggesting the presence of conformational discontinuity at the junctions between the oligo(dA)oligo(dT) tract and the other portions. Analyses of cross peaks in NOESY spectra between H2 of adenines and H1' of the 3'-neighbouring residues on the complementary strand revealed that the minor groove of the oligo(dA)oligo(dT) tract is narrow and compressed gradually, from 5' to 3', along the tract.  相似文献   

11.
We have synthesized a series of oligonucleotides containing the EcoRI (GAATTC) or EcoRV (GATATC) recognition site within which or adjacent to which thymidine was substituted by uridine or derivatives of uridine. The effects of these substitutions on the rate of the EcoRI and EcoRV catalyzed cleavage reaction were investigated. Our results show that most of the substitutions within the site are quite well tolerated by EcoRI, not, however, by EcoRV. We conclude that the thymin residues most likely are not directly involved in the recognition process of the EcoRI reaction. In contrast, they are major points of contact, between substrate and enzyme in the EcoRV reaction. The effects of substitutions in the position adjacent to the recognition site is also markedly different for EcoRI and EcoRV. Here, EcoRI seems to be considerably more selective than EcoRV.  相似文献   

12.
A hairpin structure contains two conformationally distinct domains: a double-helical stem with Watson-Crick base pairs and a single-stranded loop that connects the two arms of the stem. By extensive 1D and 2D 500-MHz 1H NMR studies in H2O and D2O, it has been demonstrated that the DNA oligomers d(CGCCGCAGC) and d(CGCCGTAGC) form hairpin structures under conditions of low concentration, 0.5 mM in DNA strand, and low salt (20 mM NaCl, pH 7). From examination of the nuclear Overhauser effect (NOE) between base protons H8/H6 and sugar protons H1' and H2'/H2", it was concluded that in d(CGCCGCAGC) and d(CGCCGTAGC) all the nine nucleotides display average (C2'-endo,anti) geometry. The NMR data in conjunction with molecular model building and solvent accessibility studies were used to derive a working model for the hairpins.  相似文献   

13.
Spectroscopic and calorimetric melting studies of 28 DNA hairpins were performed. These hairpins form by intramolecular folding of 16 base self‐complementary DNA oligomer sequences. Sequence design dictated that the hairpin structures have a six base pair duplex linked by a four base loop and that the first five base pairs in the stem are the same in every molecule. Only loop sequence and identity of the duplex base pair closing the loop vary for the set of hairpins. For these DNA samples, melting studies were carried out to investigate effects of the variables on hairpin stability. Stability of the 28 oligomers was ascertained from their temperature‐induced melting transitions in buffered 115 mM Na+ solvent, monitored by ultraviolet absorbance and differential scanning calorimetry (DSC). Experiments revealed the melting temperatures of these molecules range from 32.4 to 60.5°C and are concentration independent over strand concentrations of 0.5 to 260 μM; thus, as expected for hairpins, the melting transitions are apparently unimolecular. Model independent thermodynamic transition parameters, ΔHcal, ΔScal, and ΔGcal, were determined from DSC measurements. Model dependent transition parameters, ΔHvH, ΔSvH, and ΔGvH were estimated from a van't Hoff (two‐state) analysis of optical melting transitions. Results of these studies reveal a significant sequence dependence to DNA hairpin stability. Thermodynamic parameters evaluated by either procedure reveal the transition enthalpy, ΔHcalHvH) can differ by as much as 20 kcal/mol depending on sequence. Similarly, values of the transition entropy ΔScalSvH) can differ by as much as 60 cal/Kmol (eu) for different molecules. Differences in free energies ΔGcalGvH) are as large as 4 kcal/mol for hairpins with different sequences. Comparisons between the model independent calorimetric values and the thermodynamic parameters evaluated assuming a two‐state model reveal that 10 of the 28 hairpins display non‐two‐state melting behavior. The database of sequence‐dependent melting free energies obtained for the hairpins was employed to extract a set of n‐n (nearest‐neighbor) sequence dependent loop parameters that were able to reproduce the input data within error (with only two exceptions). Surprisingly, this suggests that the thermodynamic stability of the DNA hairpins can in large part be reasonably represented in terms of sums of appropriate nearest‐neighbor loop sequence parameters. © 1999 John Wiley & Sons, Inc. Biopoly 50: 425–442, 1999  相似文献   

14.
L J Rinkel  I Tinoco  Jr 《Nucleic acids research》1991,19(13):3695-3700
One- and two-dimensional nuclear magnetic resonance (NMR) experiments were used to study the conformation of the DNA hexadecanucleotide d(CACGTGTGTGCGTGCA) in aqueous solution. NMR spectra were recorded for the compound in D2O and in H2O/D2O (90/10) over the temperature range 1 degree C-60 degrees C. Assignments of imino proton resonances and of non-exchangeable proton resonances (except for some H4', H5' and H5" resonances) are given. The 1H-NMR spectra indicate that below about 20 degrees C, the compound exists as a single monomolecular species. Between 20 degrees C and 55 degrees C the oligonucleotide occurs as a mixture of structures in fast exchange on the NMR time scale, except for the temperature region 30 degrees - 34 degrees C, where substantial line broadening indicates intermediate exchange; above 60 degrees C the single strand predominates. The imino proton spectra, chemical shift values, and scalar coupling and NOE data reveal that the monomeric form, which is exclusively present below 20 degrees C, consists of a structure with a B-DNA double helix region of six base pairs, both ends of which are closed by hairpin loops of only two nucleotides, giving the molecule a dumbbell-like structure: [sequence: see text].  相似文献   

15.
D R Hare  B R Reid 《Biochemistry》1986,25(18):5341-5350
The three-dimensional structure of d(CGCGTTTTCGCG) in solution has been determined from proton NMR data by using distance geometry methods. The rate of dipolar cross-relaxation between protons close together in space is used to calculate distances between proton pairs within 5 A of each other; these distances are used as input to a distance geometry algorithm that embeds this distance matrix in three-dimensional space. The resulting refined structures that best agree with the input distances are all very similar to each other and show that the DNA sequence forms a hairpin in solution; the bases of the loop region are stacked, and the stem region forms a right-handed helix. The advantages and limitations of the technique, as well as the computer requirements of the algorithm, are discussed.  相似文献   

16.
The synthesis and characterization of an octanucleotide, d(GGsAATTCC), containing the recognition sequence of the EcoRI restriction endonuclease with a phosphorothioate internucleotidic linkage at the cleavage site are described. Two approaches for the synthesis of the RP and SP diastereomers of this octamer by the phosphite method are presented. The first consists of the addition of sulfur instead of H2O to the phosphite at the appropriate position during chain elongation. This method results in a mixture of diastereomers that can be separated by high-performance liquid chromatography after 5'-terminal phosphorylation. The second uses the presynthesized and diastereomerically pure dinucleoside phosphorothioate d[Gp(S)A] for the addition to the growing oligonucleotide chain as a block. The products are characterized by digestion with nuclease P1, fast atom bombardment mass spectrometry, 31P NMR spectroscopy, and conversion to d(GGAATTCC) by desulfurization with iodine. Only the RP diastereomers of d(GGsAATTCC) and its 5'-phosphorylated derivative are cleaved by EcoRI endonuclease. The rate of hydrolysis is slower than that of the unmodified octamer. The phosphorothioate octamer will be useful for the determination of the stereochemical course of the EcoRI-catalyzed reaction.  相似文献   

17.
18.
The propeptides of the vitamin K dependent blood clotting and regulatory proteins contain a gamma-carboxylation recognition site that directs precursor forms of these proteins for posttranslational gamma-carboxylation. Peptides corresponding to the propeptide of prothrombin were synthesized and examined by circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). CD spectra indicate that these peptides have little or no secondary structure in aqueous solutions but that the addition of trifluoroethanol induces or stabilizes a structure containing alpha-helical character. The maximum helical content occurs at 35-40% trifluoroethanol. This trifluoroethanol-stabilized structure was solved by two-dimensional NMR spectroscopy. The NMR results demonstrate that residues -13 to -3 form an amphipathic alpha-helix. NMR spectra indicate that a similar structure is present at 5 degrees C, in the absence of trifluoroethanol. Of the residues previously implicated in defining the gamma-carboxylation recognition site, four residues (-18, -17, -16, and -15) are adjacent to the helical region and one residue (-10) is located within the helix. The potential role of the amphipathic alpha-helix in the gamma-carboxylation recognition site is discussed.  相似文献   

19.
The conformation of two hexanucleotides, d(GGATCC) and d(GGm6ATCC), has been studied by proton nuclear magnetic resonance. Nuclear Overhauser effect (NOE) measurements on d(GGATCC) are in agreement with a normal B form right-handed helical structure. The single- and double-strand resonances are in fast exchange on a proton NMR time scale. The exchange is observed to be slow for d(GGm6ATCC); up to the Tm, separate resonances are observed for each state, though above the Tm exchange becomes more rapid. The preferred orientation of the adenosine methylamino group (methyl cis to N1) hinders base-pair formation. At 0 degree C irradiation of the m6A-T imino proton gives an NOE to AH2, showing that base pairing is Watson-Crick. Intra- and interresidue NOEs show that the helix is right handed and in the B form. Comparing results on the two oligomers demonstrates that adenosine methylation induces little or no change in the conformation of the helix but reduces the Tm from 45 to 32 degrees C. All of the amino proton resonances, as well as the imino resonances, have been assigned. From NOE experiments on the unmethylated oligomer we have located the Watson-Crick and non-Watson-Crick adenosine amino protons. At 0 degree C these resonances show broadening due to rotation of the amino group, and their rotation is slightly slower than for the adjacent guanosine amino group, though both these amino groups have lifetimes of less than 10 ms at 0 degree C. The imino protons show normal behavior, disappearing from the spectra ca. 20 degrees C below the Tm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Methylation of nucleic acid bases is known to prevent the cleavage of DNA by restriction endonucleases. The effect on the conformation of the DNA molecule itself and hence its interactions with other DNA binding proteins has been a subject of general interest. To help address this question, we have solved the crystal structure at 2.0 A of the methylated dodecamer, d(CGCGAm6ATTCGCG), which contains the EcoRI recognition sequence and have compared the conformation of the methylated molecule with that of its nonmethylated counterpart. This methylation produces a bulky hydrophobic patch on the floor of the major groove of B-DNA which plays an important role in the mechanism of inhibition of EcoRI restriction activity. However, with the exception of small perturbations in the immediate vicinity of the methyl groups, the structure is virtually unchanged. Given the lack of a conformational change upon methylation, we have extended this thesis of the recognition process to other types of restriction systems and found that different restriction enzymes seem to have their own characteristic protein-DNA interactions. The relative spatial orientations of methylation sites and cleavage sites must play a major role in ordering protein secondary structure elements as well as subunit-subunit interactions along the DNA strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号