首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trinuclear complexes [Ag(PR3)2]2[Ni(mnt)2] and [AgL]2[Ni(mnt)2] have been prepared by reactions of (NEt4)2[Ni(mnt)2] and Ag2SO4 with alkyl phosphines (PR3=P(CH3)3 (PMe3) for 1, P(C2H5)3 (PEt3) for 2 and P(C6H11)3 (PCy3) for 3), or with chelating diphosphines (L=1,1′-bis(diphenylphosphino)ferrocene (dppf) for 4 and bis(diphenylphosphino)methane (dppm) for 5). The structures of all the complexes have been determined by X-ray crystallography. Interactions between the [Ag(PR3)2]+ and [Ni(mnt)2]2− groups occur in compounds 1 and 2 with Ni---Ag distances of 3.063(4) and 2.9311(6) Å, respectively. Only one sulfur atom of each mnt ligand bridged [Ag(PR3)2]+ cations and [Ni(mnt)2]2− anions in compound 1 through 3 with Ag---S distances of about 2.7 Å. There is no interaction between Ag and Ni in compound 3 due to the flexibility of the cyclohexyl groups. Interactions between [AgL]+ and [Ni(mnt)2]2− groups also occur in compound 4 with a much shorter Ag---Ni distance of 2.7213(7) Å, while silver atoms and the NiS4 plane in compound 4 make a chair conformation with Ag---S distances of about 2.8 Å. In compound 5, dppm bridges two silver atoms, and interaction between silver atoms occurs at a distance of 2.9859(11) Å, and only one sulfur atom of mnt is used to bridge Ni and Ag atoms with Ag---S distances of 2.582(3) and 2.663(3) Å.  相似文献   

2.
Analogy with the isolable oxo cluster [Fe3(CO)93-O)]2−, which is structurally interesting and synthetically useful, prompted the present attempt to synthesize its ruthenium analog. Although the high reactivity of [Ru3(CO)93-O)]2− (I) prevented its isolation, the reaction of this species with [M(CO)3(NCCH3)]+, where M = Mn or Re, yields [PPN][MRu3(CO)1223-NC(μ-O)CH3]. The high nucleophilicity of the oxo ligand in [Ru3(CO)93-O)]2− (I) appears to be responsible for the conversion of acetonitrile to an acetamidediato ligand and for the instability of I. The crystal structure of [PPN][MnRu3(CO)1223-NC(μ-O)CH3)]] reveals a hinged butterfly array of metal atoms in which the acetamidediato ligand bridges the two wings with μ3-N bonding to an Mn and two Ru atoms, and μ-O bonding to an Ru atom.  相似文献   

3.
Metathesis of [(η33−C10H16)Ru(Cl) (μ−Cl)]2 (1) with [R3P) (Cl)M(μ-Cl)]2 (M = Pd, Pt), [Me2NCH2C6H4Pd(μ-Cl)]2 and [(OC)2Rh(μ-Cl)]2 affords the heterobimetallic chloro bridged complexes (η33-C10H16) (Cl)Ru(μ-Cl)2M(PR3)(Cl) (M = Pd, Pt), (η33-C10H16) (Cl)Ru(μ-Cl)2PdC6H4CH2NMe2 and (η33-C10H16) (Cl)Ru(μ-Cl)2Rh(CO)2, respectively. Complex 1 reacts with [Cp*M(Cl) (μ-Cl)]2 (M = Rh, Ir), [p-cymene Ru(Cl) (μ-Cl]2 and [(Cy3P)Cu(μ-Cl)]2 to give an equilibrium of the heterobimetallic complexes and of educts. The structures of (η33-C10H16)Ru(μ-Cl)2Pd(PR3) (Cl) (R = Et, Bu) and of one diastereoisomer of (η33-C10H16)Ru(μ-Cl)2IrCp*(Cl) were determined by X-ray diffraction.  相似文献   

4.
The binuclear cyanoferrate, tetraphenylphosphonium pentacyanoiron(III)-μ-cyano-amminetetracyanoiron(III), [(C6H5)4P]4[Fe2(CN)10NH3]4−, was synthesized by air oxidation of aqueous solutions of Na3[Fe(CN)5NH3] · 3H2O. Single crystal X-ray diffraction studies show the compound to contain the binuclear, cyano-bridged anion, [(NC)5Fe---NC---Fe(CN)4NH3]4−. This compound is structurally identical to the one prepared by A. Ludi et al., [Inorg. Chim. Acta, 34, 113 (1979)], with the exception that [Fe(CN)6]3− is not required for the synthesis of this compound. The Fe(III) atoms are antiferromagnetically coupled through the CN bridge, as shown by a maximum in the magnetic susceptibility at 50 K. The electronic and IR spectra of the complex in the solid state and in solution are discussed.  相似文献   

5.
The reaction of [N(PPh3)2]2[Ni6(CO)12] with Cu(PPh3)xCl (x=1, 2), as well as the degradation of [N(PPh3)2]2[H2Ni12(CO)21] with PPh3, affords the new and unstable dark orange–brown [N(PPh3)2]2[Ni9(CO)16].THF salt in low yields. This salt has been characterized by a CCD X-ray diffraction determination, along with IR spectroscopy and elemental analysis. The close-packed two-layer metal core geometry of the [Ni9(CO)16]2− dianion is directly related to that of the bimetallic [Ni6Rh3(CO)17]3− trianion and may be envisioned to be formally derived from the hcp three-layer geometry of [Ni12(CO)21]4− by the substitution of one of the two outer [Ni3(CO)3(μ−CO)3]2− layers with a face-bridging carbonyl group.  相似文献   

6.
The reaction of meso-tetrakis (4-dimethoxyphenyl) porphinatomanganese(II), MnTPOMeP, with TCNE (TCNE = tetracyanoethylene) leads to the formation of [MnTPOMeP]+ [TCNE] and [MnTPOMeP]+[OC(CN)C(CN)2]. The single-crystal X-ray structures of the latter as well as [Cu(bipy)2Cl]+ [OC(CN)C(CN)2] were determined. The former has a disordered [OC(CN)C(CN)2] bridging via C and O between a pair of MnIII sites, whereas the latter has an isolated [OC(CN)C(CN)2] unbound to CuII. The IR characterization for μ2-C,O bound [OC(CN)C(CN)2] is at 2219m and 2196s (νCN) cm−1 and at 1558s (νCO) cm−1 while for unbound [OC(CN)C(CN)2] it is at 2210m, 2203m, 2181m (νCN) cm−1 and at 1583s (νCO) cm−1.  相似文献   

7.
The trinuclear clusters [Pd3(μ-dppm)3(CO)]2+ and [PtPdCo(μ-dppm)2(CO)3(CNtBu)]+ exhibit a large and a small cavity, respectively, formed by the phenyl rings of the bridging diphosphine ligands. Their binding constants (K11) with halide ions (X) were obtained by UV-Vis spectroscopy. The binding ability varies as I > Br > Cl, and [Pd3(μ-dppm)3(CO)]2+ > [ptPdCo(μ-dppm)2-(CO)3(CNtBu)]+. The MO diagram for the related cluster [Pd2Co(μ-dppm)2(CO)4]+ has been addressed theoretically in order to predict the nature of the lowest energy electronic bands. For this class of compounds, the lowest energy bands are assigned to charge transfers from the Co center to the Pd2 centers.  相似文献   

8.
The luminescence and absorption properties of [Re(bpy)(CO)4](PF6) and [Re(phen)(CO)4](PF6) are consistent with representation of the lowest excited states as nominally 3LC with an admixture of 1CT character. Using high resolution spectroscopic techniques at cryogenic temperatures, such as luminescence line narrowing spectroscopy or spectroscopy in single crystals, the vibrational sideband information which is normally lost in the ‘natural’ solution environment can be observed in the luminescence and absorption spectra. Mixing between the 3LC and 1CT excitation (3%) has previously been reported in [Re(bpy)(CO)4](PF6), resulting in metal-ligand sidebands at 184 and 198 cm−1 in the absorption spectrum and a short luminescence lifetime (33.0 μs). In the luminescence spectra (line narrowed) the metal-ligand sidebands are observed at 194 cm−1. Weak mixing ( 1%) of the 1CT excitation (32 100 cm−1) with the 3LC excitation (22 100 cm−1) in [Re(phen)(CO)4](PF6) gives rise to the observation of metal-ligand vibrational sidebands in the luminescence spectrum (204 cm−1) and a luminescence lifetime of τ= 295±5 μs at 20 K. A spin-orbit mixing matrix element of 3LC|Hso|1CT for [Re(phen)(CO)4](PF6) of 65 cm−1 is calculated, compared to 261 cm−1 in [Re(bpy)(CO)4](PF6).  相似文献   

9.
The formation of three [Tl(en)n]3+ complexes (n=1–3) in a pyridine solvent has been established by means of 205Tl and 1H NMR. Their stepwise stability constants based on concentrations, Kn=[Tl(en)n 3+]/{[Tl(en)n−1 3+]·[en]}, at 298 K in 0.5 M NaClO4 ionic medium in pyridine, were calculated from 205Tl NMR integrals: log K1=7.6±0.7; log K2=5.2±0.5 and log K3=2.64±0.05. Linear correlation between both the 205Tl NMR shifts and spin–spin coupling 205Tl–1H versus the stability constants has been found and discussed. A single crystal with the composition [Tl(en)3](ClO4)3 was synthesized and its structure determined by X-ray diffraction. The Tl3+ ion is coordinated by three ethylenediamine ligands via six N-donor atoms in a distorted octahedral fashion.  相似文献   

10.
It is shown by X-ray studies that the compound Ni(HPOB)(NO3)2(MeOH)9 [where HPOB=hexaxis(N-pyridin-4-one)benzene] contains [Ni(MeOH)6]2+ cations hydrogen-bonded to the oxygen atoms of the pyridone units in HPOB, with the resulting six-connectivity at both metal and HPOB producing a three-dimensional network array essentially topologically equivalent to the -Po structure. The pyridone rings in the HPOB molecules are arranged orthogonally to the central C6 ring and the nitrate anions form an unusual (NO3 −)(HPOB)(NO3 −) ‘sandwich’ by a combination of π-stacking and C---HO hydrogen bonds.  相似文献   

11.
The reversible equilibrium conversion under H2 of [RuCl(dppb) (μ-Cl)]2 (1) to generate (η2-H2) (dppb) (μ-Cl)3RuCl(dppb) in CH2Cl2 (dppb = Ph2P(CH2)4PPh2) has been studied at 0–25 °C by UV-Vis and 31P{1H} NMR spectroscopy, and by stoppe kinetics; the equilibrium constant and corresponding thermodynamic parameters, and the forward and reverse rate constants at 25 °C have been determined. A measured ΔH° value of 0 kJ mol−1 allows for an estimation of an exothermicity of 60 kJ mol−1 for binding an η2-H2 at an Ru(II) centre; a ΔS° value of 60 J mol−1 K−1 indicates that in solution 1 contain s coordinated CH2Cl2. The kinetic and thermodynamic data are compared to those obtained from a previously studied hydrogenation of styrene catalyzed by 1. Preliminary findings on related systems containing Ph2P(CH2)3PPh2 and (C6H11)2P(C6H11)2 are also noted.  相似文献   

12.
Two new dicyanamide bridged 1D polynuclear copper(II) complexes [Cu(L1){μ1,5-N(CN)2}]n (1) [L1H = C6H5C(O)NHNC(CH3)C5H4N] and [Cu(L2){μ1,5-N(CN)2}]n (2) [L2H=C6H5C(O)CHC(CH3)NCH2CH2N(CH3)2] have been synthesised and structures of both the complexes and their crystal packing arrangements have been established by X-ray crystallography. For complex 1, a tridentate hydrazone ligand (L1H) obtained by the condensation of benzhydrazide and 2-acetylpyridine is used, whereas a tridentate Schiff base (L2H) derived from benzoylacetone and 2-dimethylaminoethylamine is employed for the preparation of complex 2. Variable temperature magnetic susceptibility measurement studies indicate there are weak antiferromagnetic interactions with J values −0.10 and −1.41 cm−1 for 1 and 2, respectively.  相似文献   

13.
Monomeric complexes [Cu(LL)(L′)(NO3)2] (where LL is 2,2′-bipyridine or 1,10-phenanthroline and L′ is 1-methylimidazole) and dimeric complexes [Cu2(LL)2(L″)]NO3 (where L″ is an anion of imidazole or 2-methylimidazole) have been synthesized. These complexes show a d-d transition in the range of 600 to 710 nm. The infrared spectra of monomeric complexes show that the NO3 is coordinated to copper as a monodentate ligand through an oxygen atom. The ESR spectra of monomeric complexes indicate that the ligands are bonded in axial environment around copper (square pyramidal geometry) with three nitrogen donors occupying an equatorial plane. The ESR spectra of dimeric complexes show a broad signal at about G = 2 with an additional weak signal at about G = 4. This suggests that two copper atoms are in close proximity of < 7 Å. The ESR studies reveal that the formation of imidazolate-bridged binuclear copper(II) complexes from [Cu(LL)(L′)(NO3)2] and imidazole is pH dependent with apparent pKa values of 8.25 to 8.30. The superoxide dismutase activity of ICu(phen)(L′)(NO3)2], [Cu(bipy)(L′)(NO3)2], and [Cu2(bipy)2(L′)2(L″)]NO3 has been measured and the latter two complexes show better activity than the former complex.  相似文献   

14.
Cp#2Yb (Cp#=C5H4(CH2)2NMe2) has been obtained by reaction of YbI2(THF)2 with 2 equiv. of C5H4(CH2CH2NMe2)K in THF. The X-ray structure analysis shows a bent structure with intramolecular coordination of both nitrogen atoms to ytterbium. The reaction of C60-fullerene with Cp#2Yb leads to the formation of the fullerenide derivative [Cp#2Yb]2C60, which shows an ESR signal in the solid state and in THF solution at room temperature (solid: ΔH = 50 G, G = 1.9992; solution: ΔH = 10 G, G = 2.0001) and a magnetic moment of 3.6 BM. The lutetium fullerenides CpLu(C60)(DME) (3) and Cp*Lu(C60)(DME)(C6H5CH3) (4), (Cp = η5−C5H5, Cp* = η5−C5Me5), were obtained by reaction of C60 with CpLu(C10H8) (DME) and Cp*Lu(C10H8) (DME) in toluene. Both complexes are paramagnetic (μeff = 1.4 and 0.9 BM) and exhibit temperature-dependent ESR signals (293 K: g = 1.992 and 2.0002 respectively).  相似文献   

15.
The kinetics of the displacement reactions of the bromide ligands of trans-[FeBr2(depe)2] (depe = Et2PCH2CH2PEt2) by the organonitrile NCCH2C6H4OMe-4, in tetrahydrofuran (either in the absence or in the presence of added Br), to give the corresponding mono- and dinitrile complexes trans-[FeBr(NCCH2C6H4OMe-4)(depe)2]+ and trans-[Fe(NCCH2C6H4OMe-4)2(depe)2]2+, have been investigated by stopped-flow spectrophotometry. The substitution reaction occurs by a mechanism involving rate-limiting dissociation of bromo ligands to form the unsaturated intermediates [FeBr(depe)2]+ (k1 = 1.52 ± 0.02 s−1) and [Fe(NCR)(depe)2]2+ (k3 = 0.063 ± 0.008 s−1) which add the nitrile ligand to form those nitrile complexes. The competition between the nitrile and Br for such metal centres has also been investigated and a stronger inhibiting effect of added Br is observed for the substitution of the second bromo ligand relative to the first one. The kinetic data are rationalized in terms of π-electronic effects of these unsaturated metal centres and of the bromide and nitrile ligands.  相似文献   

16.
Three new crystalline tin selenide salts have been prepared from the reactions of [PPh4]2[Sn(Se43] in supercritical solvents. The starting material pyrolyzes in supercritical acetonitrile to form [PPh4]4[Sn6Se21] (I), and it also reacts with SnSe in supercritical ammonia leading to a mixture of [PPh4]4[Sn3Se11]2 (II). and [PPh4]2[Sn(Se4)(Se6)2] (III). All three compounds have been characterized by single crystal X-ray diffraction. Crystallographic data: for I, C96H90P4Se21Sn6, space group triclinic, P-1, A = 18.763(3), B = 24.600(4), C = 13.137(1) Å, = 102.63(1), β = 93.66(1), γ = 108.72(1)°, V = 5544(1) Å3, Z = 2, R = 0.0350, RW = 0.0317: for II, C96H80P4Se22Sn6, space group monoclinic P21/c, A = 31.500(4), B = 16.572(3), C = 22.352(3) Å, β = 103.53(1)°, V = 11344(3) Å3, Z = 4, R = 0.0771, RW = 0.0664: for III, C48H40P2Se16Sn, space group monoclinic, C2/c, A = 25.381(2), B = 13.934(4), C = 19.465(3) Å, β = 121.587(8)°, V = 5867(2) Å3, Z = 4, R = 0.0807, RW = 0.0650. One of the compounds, [PPh4]2[Sn(Se4(Se62], is a molecular cluster while the other two complexes [PPh4]4[Sn3Se11]2 and [PPh4]4[Sn6Se21], are one dimensional tin selenide chains. The structures of the two chains are related and consits of tetrahedral and distorted trigonal bipyramidal tin(IV) centers bridged by Se2−, Se22− and Se32− chains.  相似文献   

17.
The positive ion electrospray mass spectrometry (ESI-MS) of trans-[Ru(NO)Cl)(dpaH)2]Cl2 (dpaH=2,2′-dipyridylamine), obtained from the carrier solvent of H2O–CH3OH (50:50), revealed 1+ ions of the formulas [RuII(NO+)Cl(dpaH)(dpa)]+ (m/z=508), [RuIIICl(dpaH)(dpa)]+ (m/z=478), [RuII(NO+)(dpa)2]+ (m/z=472), [RuIII(dpa)2]+ (m/z=442), originating from proton dissociation from the parent [RuII(NO+)Cl(dpaH)2]2+ ion with subsequent loss of NO (17.4% of dissociative events) or loss of HCl (82.6% of dissociative events). Further loss of NO from the m/z=472 fragment yields the m/z=442 fragment. Thus, ionization of the NH moiety of dpaH is a significant factor in controlling the net ionic charge in the gas phase, and allowing preferential dissociation of HCl in the fragmentation processes. With NaCl added, an ion pair, {Na[RuII(NO)Cl(dpa)2]}+ (m/z=530; 532), is detectable. All these positive mass peaks that contain Ru carry a signature ‘handprint’ of adjacent m/z peaks due to the isotopic distribution of 104Ru, 102Ru, 101Ru, 99Ru, 98Ru and 96Ru mass centered around 101Ru for each fragment, and have been matched to the theoretical isotopic distribution for each set of peaks centered on the main isotope peak. When the starting complex is allowed to undergo aquation for two weeks in H2O, loss of the axial Cl is shown by the approximately 77% attenuation of the [RuII(NO+)Cl(dpaH)(dpa)]+ ion, being replaced by the [RuII(NO+)(H2O)(dpa)2]+ (m/z=490) as the most abundant high-mass species. Loss of H2O is observed to form [RuII(NO+)(dpa)2]+ (m/z=472). No positive ion mass spectral peaks were observed for RuCl3(NO)(H2O)2, ‘caged NO’. Negative ions were observed by proton dissociation forming [RuII(NO)Cl3(H2O)(OH)] in the ionization chamber, detecting the parent 1− ion at m/z=274, followed by the loss of NO as the main dissociative pathway that produces [RuIIICl3(H2O)(OH)] (m/z=244). This species undergoes reductive elimination of a chlorine atom, forming [RuIICl2(H2O)(OH)] (m/z=208). The ease of the NO dissociation is increased for the negative ions, which should be more able to stabilize a RuIII product upon NO loss.  相似文献   

18.
The kinetics of substitution reactions of [η-CpFe(CO)3]PF6 with PPh3 in the presence of R-PyOs have been studied. For all the R-PyOs (R = 4-OMe, 4-Me, 3,4-(CH)4, 4-Ph, 3-Me, 2,3-(CH)4, 2,6-Me2, 2-Me), the reactions yeild the same product [η5-CpFe(CO)2PPh3]PF6, according to a second-order rate law that is first order in concentrations of [η5-CpFe(CO)3]PF6 and of R-PyO but zero order in PPh3 concentration. These results, along with the dependence of the reaction rate on the nature of R-PyO, are consistent with an associative mechanism. Activation parameters further support the bimmolecular nature of the reactions: ΔH = 13.4 ± 0.4 kcal mol−1, ΔS = −19.1 ± 1.3 cal k−1 mol−1 for 4-PhPyO; ΔH = 12.3 ± 0.3 kcal mol−1, ΔS = 24.7 ±1.0 cal K−1 mol−1 for 2-MePyO. For the various substituted pyridine N-oxides studied in this paper, the rates of reaction increase with the increasing electron-donating abilities of the substituents on the pyridine ring or N-oxide basicities, but decrease with increasing 17O chemical shifts of the N-oxides. Electronic and steric factors contributing to the reactivity of pyridine N-oxides have been quantitatively assessed.  相似文献   

19.
Five heterometallic compounds with formulae [Ba(H2O)4Cr2(μ-OH)2(nta)2] · 3H2O (I), [M(bpy)2(H2O)2] [Cr2(OH)2(nta)2] · 7H2O, where M2+ = Zn, (II); Ni, (III); Co, (IV) and [Mn(H2O)3(bpy)Cr2(OH)2(nta)2] · (bpy) · 5H2O (V); bpy = 2,2′-bipyridine, (nta = nitrilotriacetate ion) have been prepared by reaction of I with the corresponding MII-sulfates in the presence of 2,2′-bipyridine. Substances I–V have been characterized by magnetic susceptibility measurements, EPR and X-ray determinations. I represents a 2D coordination polymer formed by coordination of centrosymmetrical dimeric chromium(III) units and Barium cations. The 10-coordinate Ba polyhedron is completed by four water molecules. Compounds II–IV are isostructural and consist of non-centrosymmetric dimeric anions [Cr2(μ-OH)2(nta)2]2−, complex cations [MII(bpy)2(H2O)2]2+ and solvate water molecules. The octahedral coordination of chromium atoms implies four donor atoms of the nta3− ligands and two bridging OH groups. Multiple hydrogen bonds of coordinated and solvate water molecules link anions and cations in a 3D network. A similar [Cr2(μ-OH)2(nta)2]2− unit is found in V. The bridging function is performed by a carboxylate oxygen atom of the nta ligand that leads to the formation of a trinuclear complex [Mn(bpy)(H2O)2Cr2(μ-OH)2(nta)2]. Experimental and calculated frequency and temperature dependences of EPR spectra of these compounds are presented. The fine structure appearing on the EPR spectra of compound V is analyzed in detail at different temperatures. It is established that the main part of the EPR signals is due to the transitions in the spin states of a spin multiplet with S = 2. Analyses of experimental and calculated spectra confirm the absence of interaction between metal ions (MII) and Cr-dimers in complexes III and IV and the presence of weak Mn–Cr interactions in V. The temperature dependence of magnetic susceptibilities for I–V was fitted on the basis of the expression derived from isotropic Hamiltonian including a bi-quadratic exchange term.  相似文献   

20.
Abstraction of chloride from the Pd complex {[η3-2,6-(tBu2PCH2)2C6H3)]PdCl with AgBF4 in THF gives {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(THF)}+BF4 −. Attemped crystallization of this THF complex produced the aqua complex {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+BF4 −. Crystal structures of two crystalline forms of this compound are reported. In {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+BF4 −·THF, one hydrogen of the water is hydrogen bonded to the oxygen of the THF, and the other hydrogen is hydrogen bonded to an F of the BF4 − anion. Another crystalline form has no THF, but has both of the hydrogens of water hydrogen bonded to different BF4 − anions, such that two different BF4 − anions bridge two {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+ cations. A crystal structure is also reported for the palladium chloride complex [η3-2,6-(tBu2PCH2)2C6H3)]PdCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号