首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hsp90 is a key mediator in the folding process of a growing number of client proteins. The molecular chaperone cooperates with many co-chaperones and partner proteins to fulfill its task. In Saccharomyces cerevisiae, several co-chaperones of Hsp90 interact with Hsp90 via a tetratricopeptide repeat (TPR) domain. Here we show that one of these proteins, Cns1, binds both to Hsp90 and to the yeast Hsp70 protein Ssa1 with comparable affinities. This is reminiscent of Sti1, another TPR-containing co-chaperone. Unlike Sti1, Cns1 exhibits no influence on the ATPase of Hsp90. However, it activates the ATPase of Ssa1 up to 30-fold by accelerating the rate-limiting ATP hydrolysis step. This stimulating effect is mediated by the N-terminal TPR-containing part of Cns1, whereas the C-terminal part showed no effect. Competition experiments allow the conclusion that Hsp90 and Ssa1 compete for binding to the single TPR domain of Cns1. Taken together, Cns1 is a potent cochaperone of Ssa1. Our findings highlight the importance of the regulation of Hsp70 function in the context of the Hsp90 chaperone cycle.  相似文献   

2.
The cellular chaperone machinery plays key role in the de novo formation and propagation of yeast prions (infectious protein). Though the role of Hsp70s in the prion maintenance is well studied, how Hsp90 chaperone machinery affects yeast prions remains unclear. In the current study, we examined the role of Hsp90 and its co-chaperones on yeast prions [PSI+] and [URE3]. We show that the overproduction of Hsp90 co-chaperone Tah1, cures [URE3] which is a prion form of native protein Ure2 in yeast. The Hsp90 co-chaperone Tah1 is involved in the assembly of small nucleolar ribonucleoproteins (snoRNP) and chromatin remodelling complexes. We found that Tah1 deletion improves the frequency of de novo appearance of [URE3]. The Tah1 was found to interact with Hsp70. The lack of Tah1 not only represses antagonizing effect of Ssa1 Hsp70 on [URE3] but also improves the prion strength suggesting role of Tah1 in both fibril growth and replication. We show that the N-terminal tetratricopeptide repeat domain of Tah1 is indispensable for [URE3] curing. Tah1 interacts with Ure2, improves its solubility in [URE3] strains, and affects the kinetics of Ure2 fibrillation in vitro. Its inhibitory role on Ure2 fibrillation is proposed to influence [URE3] propagation. The present study shows a novel role of Tah1 in yeast prion propagation, and that Hsp90 not only promotes its role in ribosomal RNA processing but also in the prion maintenance.SummaryPrions are self-perpetuating infectious proteins. What initiates the misfolding of a protein into its prion form is still not clear. The understanding of cellular factors that facilitate or antagonize prions is crucial to gain insight into the mechanism of prion formation and propagation. In the current study, we reveal that Tah1 is a novel modulator of yeast prion [URE3]. The Hsp90 co-chaperone Tah1, is required for the formation of small nucleolar ribonucleoprotein complex. We show that the absence of Tah1 improves the induction of [URE3] prion. The overexpressed Tah1 cures [URE3], and this function is promoted by Hsp90 chaperones. The current study thus provides a novel cellular factor and the underlying mechanism, involved in the prion formation and propagation  相似文献   

3.
The Saccharomyces cerevisiae [PSI(+)] prion is believed to be a self-propagating cytoplasmic amyloid. Earlier characterization of HSP70 (SSA1) mutations suggested that [PSI(+)] propagation is impaired by alterations that enhance Ssa1p's substrate binding. This impairment is overcome by second-site mutations in Ssa1p's conserved C-terminal motif (GPTVEEVD), which mediates interactions with tetratricopeptide repeat (TPR) cochaperones. Sti1p, a TPR cochaperone homolog of mammalian Hop1 (Hsp70/90 organizing protein), activates Ssa1p ATPase, which promotes substrate binding by Ssa1p. Here we find that in SSA1-21 cells depletion of Sti1p improved [PSI(+)] propagation, while excess Sti1p weakened it. In contrast, depletion of Fes1p, a nucleotide exchange factor for Ssa1p that facilitates substrate release, weakened [PSI(+)] propagation, while overproducing Fes1p improved it. Therefore, alterations of Hsp70 cochaperones that promote or prolong Hsp70 substrate binding impair [PSI(+)] propagation. We also find that the GPTVEEVD motif is important for physical interaction with Hsp40 (Ydj1p), another Hsp70 cochaperone that promotes substrate binding but is dispensable for viability. We further find that depleting Cpr7p, an Hsp90 TPR cochaperone and CyP-40 cyclophilin homolog, improved [PSI(+)] propagation in SSA1 mutants. Although Cpr7p and Sti1p are Hsp90 cochaperones, we provide evidence that Hsp90 is not involved in [PSI(+)] propagation, suggesting that Sti1p and Cpr7p functionally interact with Hsp70 independently of Hsp90.  相似文献   

4.
S100A2 and S100A6 interact with several target proteins in a Ca2+-regulated manner. However, the exact intracellular roles of the S100 proteins are unclear. In this study we identified Hsp70/Hsp90-organizing protein (Hop) and kinesin light chain (KLC) as novel targets of S100A2 and S100A6. Hop directly associates with Hsp70 and Hsp90 through the tetratricopeptide (TPR) domains and regulates Hop-Hsp70 and Hop-Hsp90 complex formation. We have found that S100A2 and S100A6 bind to the TPR domain of Hop, resulting in inhibition of the Hop-Hsp70 and Hop-Hsp90 interactions in vitro. Although endogenous Hsp70 and Hsp90 interact with Hop in resting Cos-7 cells, but not with S100A6, stimulation of these cells with ionomycin caused a Hop-S100A6 interaction, resulting in the dissociation of Hsp70 and Hsp90 from Hop. Similarly, glutathione S-transferase pulldown and co-immunoprecipitation experiments revealed that S100A6 binds to the TPR domain of KLC, resulting in inhibition of the KLC-c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP-1) interaction in vitro. The transiently expressed JIP-1 interacts with KLC in resting Cos-7 cells but not with S100A6. Stimulation of these cells with ionomycin also caused a KLC-S100A6 interaction, resulting in dissociation of JIP-1 from KLC. These results strongly suggest that the S100 proteins modulate Hsp70-Hop-Hsp90 multichaperone complex formation and KLC-cargo interaction via Ca2+-dependent S100 protein-TPR protein complex formation in vivo as well as in vitro. Moreover, we have shown that S100A2 and S100A6 interact with another TPR protein Tom70 and regulate the Tom70-ligand interaction in vitro. Thus, our findings suggest a new intracellular Ca2+-signaling pathway via S100 proteins-TPR motif interactions.  相似文献   

5.
The molecular chaperone Hsp (heat-shock protein) 90 is critical for the activity of diverse cellular client proteins. In a current model, client proteins are transferred from Hsp70 to Hsp90 in a process mediated by the co-chaperone Sti1/Hop, which may simultaneously interact with Hsp70 and Hsp90 via separate TPR (tetratricopeptide repeat) domains, but the mechanism and in vivo importance of this function is unclear. In the present study, we used truncated forms of Sti1 to determine the minimal regions required for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. We found that both TPR1 and TPR2B contribute to the Hsp70 interaction in vivo and that mutations in both TPR1 and TPR2B were required to disrupt the in vitro interaction of Sti1 with the C-terminus of the Hsp70 Ssa1. The TPR2A domain was required for the Hsp90 interaction in vivo, but the isolated TPR2A domain was not sufficient for the Hsp90 interaction unless combined with the TPR2B domain. However, isolated TPR2A was both necessary and sufficient for purified Sti1 to migrate as a dimer in solution. The DP2 domain, which is essential for in vivo function, was dispensable for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. As evidence for the role of Sti1 in mediating the interaction between Hsp70 and Hsp90 in vivo, we identified Sti1 mutants that result in reduced recovery of Hsp70 in Hsp90 complexes. We also identified two Hsp90 mutants that exhibit a reduced Hsp70 interaction, which may help clarify the mechanism of client transfer between the two molecular chaperones.  相似文献   

6.
7.
Maintenance of protein homeostasis by molecular chaperones Hsp70 and Hsp90 requires their spatial and functional coordination. The cooperation of Hsp70 and Hsp90 is influenced by their interaction with the network of co-chaperone proteins, some of which contain tetratricopeptide repeat (TPR) domains. Critical to these interactions are TPR domains that target co-chaperone binding to the EEVD-COOH motif that terminates Hsp70/Hsp90. Recently, the two-TPR domain-containing protein, Tomm34, was reported to bind both Hsp70 and Hsp90. Here we characterize the structural basis of Tomm34-Hsp70/Hsp90 interactions. Using multiple methods, including pull-down assays, fluorescence polarization, hydrogen/deuterium exchange, and site-directed mutagenesis, we defined the binding activities and specificities of Tomm34 TPR domains toward Hsp70 and Hsp90. We found that Tomm34 TPR1 domain specifically binds Hsp70. This interaction is partly mediated by a non-canonical TPR1 two-carboxylate clamp and is strengthened by so far unidentified additional intermolecular contacts. The two-carboxylate clamp of the isolated TPR2 domain has affinity for both chaperones, but as part of the full-length Tomm34 protein, the TPR2 domain binds specifically Hsp90. These binding properties of Tomm34 TPR domains thus enable simultaneous binding of Hsp70 and Hsp90. Importantly, we provide evidence for the existence of an Hsp70-Tomm34-Hsp90 tripartite complex. In addition, we defined the basic conformational demands of the Tomm34-Hsp90 interaction. These results suggest that Tomm34 represents a novel scaffolding co-chaperone of Hsp70 and Hsp90, which may facilitate Hsp70/Hsp90 cooperation during protein folding.  相似文献   

8.
Tah1 and Pih1 are novel Hsp90 interactors. Tah1 acts as a cofactor of Hsp90 to stabilize Pih1. In yeast, Hsp90, Tah1, and Pih1 were found to form a complex that is required for ribosomal RNA processing through their effect on box C/D small nucleolar ribonucleoprotein assembly. Tah1 is a minimal tetratricopeptide repeat protein of 111 amino acid residues that binds to the C terminus of the Hsp90 molecular chaperone, whereas Pih1 consists of 344 residues of unknown fold. The NMR structure of Tah1 has been solved, and this structure shows the presence of two tetratricopeptide repeat motifs followed by a C helix and an unstructured region. The binding of Tah1 to Hsp90 is mediated by the EEVD C-terminal residues of Hsp90, which bind to a positively charged channel formed by Tah1. Five highly conserved residues, which form a two-carboxylate clamp that tightly interacts with the ultimate Asp-0 residue of the bound peptide, are also present in Tah1. Tah1 was found to bind to the C terminus of Pih1 through the C helix and the unstructured region. The C terminus of Pih1 destabilizes the protein in vitro and in vivo, whereas the binding of Tah1 to Pih1 allows for the formation of a stable complex. Based on our data, a model for an Hsp90-Tah1-Pih1 ternary complex is proposed.  相似文献   

9.
The in vivo function of the heat shock protein 90 (Hsp90) molecular chaperone is dependent on the binding and hydrolysis of ATP, and on interactions with a variety of co-chaperones containing tetratricopeptide repeat (TPR) domains. We have now analysed the interaction of the yeast TPR-domain co-chaperones Sti1 and Cpr6 with yeast Hsp90 by isothermal titration calorimetry, circular dichroism spectroscopy and analytical ultracentrifugation, and determined the effect of their binding on the inherent ATPase activity of Hsp90. Sti1 and Cpr6 both bind with sub-micromolar affinity, with Sti1 binding accompanied by a large conformational change. Two co-chaperone molecules bind per Hsp90 dimer, and Sti1 itself is found to be a dimer in free solution. The inherent ATPase activity of Hsp90 is completely inhibited by binding of Sti1, but is not affected by Cpr6, although Cpr6 can reactivate the ATPase activity by displacing Sti1 from Hsp90. Bound Sti1 makes direct contact with, and blocks access to the ATP-binding site in the N-terminal domain of Hsp90. These results reveal an important role for TPR-domain co-chaperones as regulators of the ATPase activity of Hsp90, showing that the ATP-dependent step in Hsp90-mediated protein folding occurs after the binding of the folding client protein, and suggesting that ATP hydrolysis triggers client-protein release.  相似文献   

10.
11.
Hsp70 molecular chaperones facilitate protein folding and translocation by binding to hydrophobic regions of nascent or unfolded proteins, thereby preventing their aggregation. N-Ethylmaleimide (NEM) inhibits the ATPase and protein translocation-stimulating activities of the yeast Hsp70 Ssa1p by modifying its three cysteine residues, which are located in its ATPase domain. NEM alters the conformation of Ssa1p and disrupts the coupling between its nucleotide- and polypeptide-binding domains. Ssa1p and the yeast DnaJ homolog Ydj1p constitute a protein folding machinery of the yeast cytosol. Using firefly luciferase as a model protein to study chaperone-dependent protein refolding, we have found that NEM also inhibits the protein folding activity of Ssa1p. Interestingly, the NEM-modified protein (NEM-Ssa1p) is a potent inhibitor of protein folding. NEM-Ssa1p can prevent the aggregation of luciferase and stimulate the ATPase activity of Ssa1p suggesting that it acts as an inhibitor by binding to nonnative forms of luciferase and by competing with them for the polypeptide binding site of Ssa1p. NEM-Ssa1p inhibits Ssa1p/Ydj1p-dependent protein refolding at different stages indicating that the chaperones bind and release nonnative forms of luciferase multiple times before folding is completed.  相似文献   

12.
Sti1/Hop is a modular protein required for the transfer of client proteins from the Hsp70 to the Hsp90 chaperone system in eukaryotes. It binds Hsp70 and Hsp90 simultaneously via TPR (tetratricopeptide repeat) domains. Sti1/Hop contains three TPR domains (TPR1, TPR2A and TPR2B) and two domains of unknown structure (DP1 and DP2). We show that TPR2A is the high affinity Hsp90-binding site and TPR1 and TPR2B bind Hsp70 with moderate affinity. The DP domains exhibit highly homologous α-helical folds as determined by NMR. These, and especially DP2, are important for client activation in vivo. The core module of Sti1 for Hsp90 inhibition is the TPR2A-TPR2B segment. In the crystal structure, the two TPR domains are connected via a rigid linker orienting their peptide-binding sites in opposite directions and allowing the simultaneous binding of TPR2A to the Hsp90 C-terminal domain and of TPR2B to Hsp70. Both domains also interact with the Hsp90 middle domain. The accessory TPR1-DP1 module may serve as an Hsp70-client delivery system for the TPR2A-TPR2B-DP2 segment, which is required for client activation in vivo.  相似文献   

13.
Through simultaneous interactions with Hsp70 and Hsp90 via separate tetratricopeptide repeat (TPR) domains, the cochaperone protein Hop/Sti1 has been proposed to play a critical role in the transfer of client proteins from Hsp70 to Hsp90. However, no prior mutational analysis demonstrating a critical in vivo role for the TPR domains of Sti1 has been reported. We used site-directed mutagenesis of the TPR domains combined with a genetic screen to isolate mutations that disrupt Sti1 function. A single amino acid alteration in TPR2A disrupted Hsp90 interaction in vivo but did not significantly affect function. However, deletion of a conserved residue in TPR2A or mutations in the carboxy-terminal DP2 domain completely disrupted Sti1 function. Surprisingly, mutations in TPR1, previously shown to interact with Hsp70, were not sufficient to disrupt in vivo functions unless combined with mutations in TPR2B, suggesting that TPR1 and TPR2B have redundant or overlapping in vivo functions. We further examined the genetic and physical interaction of Sti1 with a mutant form of Hsp90, providing insight into the importance of the TPR2A domain of Sti1 in regulating Hsp90 function.  相似文献   

14.
Liu Q  Gao J  Chen X  Chen Y  Chen J  Wang S  Liu J  Liu X  Li J 《Molecular biotechnology》2008,40(3):231-240
A large number of tetratricopeptide repeat (TPR)-containing proteins have been shown to interact with the C-terminal domain of the 70 kDa heat-shock protein (Hsp70), especially those with three consecutive TPR motifs. The TPR motifs in these proteins are necessary and sufficient for mediating the interaction with Hsp70. Here, we investigate HBP21, a novel human protein of unknown function having three tandem TPR motifs predicted by computational sequence analysis. We confirmed the high expression of HBP21 in breast cancer and proliferative vitreoretinopathy (PVR) proliferative membrane and examined whether HBP21 could interact with Hsp70 using a yeast two-hybrid system and glutathione S-transferase pull-down assay. Previous studies have demonstrated the importance of Hsp70 C-terminal residues EEVD and PTIEEVD for interaction with TPR-containing proteins. Here, we tested an assortment of truncation and amino acid substitution mutants of Hsp70 to determine their ability to bind to HBP21 using a yeast two-hybrid system. The newly discovered interaction between HBP21 and Hsp70 along with observations from other studies leads to our hypothesis that HBP21 may be involved in the inhibition of progression and metastasis of tumor cells. Qinghuai Liu and Juanyu Gao have contributed equally to this work.  相似文献   

15.
Murine stress-inducible protein 1 (mSTI1) is a co-chaperone that is homologous with the human Hsp70/Hsp90-organizing protein (Hop). Guided by Hop structural data and sequence alignment analyses, we have used site-directed mutagenesis, co-precipitation assays, circular dichroism spectroscopy, steady-state fluorescence, and surface plasmon resonance spectroscopy to both qualitatively and quantitatively characterize the contacts necessary for the N-terminal tetratricopeptide repeat domain (TPR1) of mSTI1 to bind to heat shock cognate protein 70 (Hsc70) and to discriminate between Hsc70 and Hsp90. We have shown that substitutions in the first TPR motif of Lys(8) or Asn(12) did not affect binding of mSTI1 to Hsc70, whereas double substitution of these residues abrogated binding. A substitution in the second TPR motif of Asn(43) lowered but did not abrogate binding. Similarly, a deletion in the second TPR motif coupled with a substitution of Lys(8) or Asn(12) reduced but did not abrogate binding. These results suggest that mSTI1-Hsc70 interaction requires a network of interactions not only between charged residues in the TPR1 domain of mSTI1 and the EEVD motif of Hsc70 but also outside the TPR domain. We propose that the electrostatic interactions in the first TPR motif made by Lys(8) or Asn(12) define part of the minimum interactions required for successful mSTI1-Hsc70 interaction. Using a truncated derivative of mSTI1 incapable of binding to Hsp90, we substituted residues on TPR1 potentially involved in hydrophobic contacts with Hsc70. The modified protein had reduced binding to Hsc70 but now showed significant binding capacity for Hsp90. In contrast, topologically equivalent substitutions on a truncated derivative of mSTI1 incapable of binding to Hsc70 did not confer Hsc70 specificity on TPR2A. Our results suggest that binding of Hsc70 to TPR1 is more specific than binding of Hsp90 to TPR2A with serious implications for the mechanisms of mSTI1 interactions with Hsc70 and Hsp90 in vivo.  相似文献   

16.
Protein-protein interaction modules containing so-called tetratricopeptide repeats (TPRs) mediate the assembly of Hsp70/Hsp90 multi-chaperone complexes. The TPR1 and TPR2A domains of the Hsp70/Hsp90 adapter protein p60/Hop specifically bind to short peptides corresponding to the C-terminal tails of Hsp70 and Hsp90, respectively, both of which contain the highly conserved sequence motif EEVD-COOH. Here, we quantitatively assessed the contribution of TPR-mediated peptide recognition to Hsp70.Hop.Hsp90 complex formation. The interaction of TPR2A with the C-terminal pentapeptide of Hsp90 (MEEVD) is identified as the core contact for Hop binding to Hsp90. (In peptide sequences, italics are used to highlight residues specific for Hsp70 or Hsp90.) In contrast, formation of the Hsp70.Hop complex depends not only on recognition of the C-terminal Hsp70 heptapeptide (PTIEEVD) by TPR1 but also on additional contacts between Hsp70 and Hop. The sequence motifs for TPR1 and TPR2A binding were defined by alanine scanning of the C-terminal octapeptides of Hsp70 and Hsp90 and by screening of combinatorial peptide libraries. Asp0 and Val-1 of the EEVD motif are identified as general anchor residues, but the highly conserved glutamates of the EEVD sequence, which are critical in Hsp90 binding by TPR2A, do not contribute appreciably to the interaction of Hsp70 with TPR1. Rather, TPR1 prefers hydrophobic amino acids in these positions. Moreover, the TPR domains display a pronounced tendency to interact preferentially with hydrophobic aliphatic and aromatic side chains in positions -4 and -6 of their respective peptide ligands. Ile-4 in Hsp70 and Met-4 in Hsp90 are most important in determining the specific binding of TPR1 and TPR2A, respectively.  相似文献   

17.
Shaner L  Sousa R  Morano KA 《Biochemistry》2006,45(50):15075-15084
SSE1 and SSE2 encode the essential yeast members of the Hsp70-related Hsp110 molecular chaperone family. Both mammalian Hsp110 and the Sse proteins functionally interact with cognate cytosolic Hsp70s as nucleotide exchange factors. We demonstrate here that Sse1 forms high-affinity (Kd approximately 10-8 M) heterodimeric complexes with both yeast Ssa and mammalian Hsp70 chaperones and that binding of ATP to Sse1 is required for binding to Hsp70s. Sse1.Hsp70 heterodimerization confers resistance to exogenously added protease, indicative of conformational changes in Sse1 resulting in a more compact structure. The nucleotide binding domains of both Sse1/2 and the Hsp70s dictate interaction specificity and are sufficient for mediating heterodimerization with no discernible contribution from the peptide binding domains. In support of a strongly conserved functional interaction between Hsp110 and Hsp70, Sse1 is shown to associate with and promote nucleotide exchange on human Hsp70. Nucleotide exchange activity by Sse1 is physiologically significant, as deletion of both SSE1 and the Ssa ATPase stimulatory protein YDJ1 is synthetically lethal. The Hsp110 family must therefore be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.  相似文献   

18.
We have cloned and expressed the putative Caenorhabditis elegans orthologue for small glutamine-rich tetratricopeptide repeat-containing protein, now assigned the gene name sgt-1 in the C. elegans genome database. Characterization of the purified protein by cross-linking, mass spectrometry and gel filtration experiments provides unambiguous evidence that SGT-1 forms homo-dimers in solution. The hydrodynamic dimensions of SGT-1 dimers in relation to their molecular weight suggest a protein with a low level of compactness and an extended conformation. Human SGT has been shown to interact with and regulate the activity of heat shock proteins Hsp70 and Hsp90 via a TPR domain mediated interaction. The SGT TPR domain (SGT-1-TPR, residues 100-226) was cloned, purified and shown by ITC and CD analysis to interact with the C-terminal peptides of Hsp70 and Hsp90 with comparable affinities although there is no evidence of a recently proposed coupled binding-folding mechanism for TPR domains.  相似文献   

19.
Protein phosphatase 5 (PP5) is auto-inhibited by intramolecular interactions with its tetratricopeptide repeat (TPR) domain. Hsp90 has been shown to bind PP5 to activate its phosphatase activity. However, the functional implications of binding Hsp70 to PP5 are not yet clear. In this study, we find that both Hsp90 and Hsp70 bind to PP5 using a luciferase fragment complementation assay. A fluorescence polarization assay shows that Hsp90 (MEEVD motif) binds to the TPR domain of PP5 almost 3-fold higher affinity than Hsp70 (IEEVD motif). However, Hsp70 binding to PP5 stimulates higher phosphatase activity of PP5 than the binding of Hsp90. We find that PP5 forms a stable 1:1 complex with Hsp70, but the interaction appears asymmetric with Hsp90, with one PP5 binding the dimer. Solution NMR studies reveal that Hsc70 and PP5 proteins are dynamically independent in complex, tethered by a disordered region that connects the Hsc70 core and the IEEVD-TPR contact area. This tethered binding is expected to allow PP5 to carry out multi-site dephosphorylation of Hsp70-bound clients with a range of sizes and shapes. Together, these results demonstrate that Hsp70 recruits PP5 and activates its phosphatase activity which suggests dual roles for PP5 that might link chaperone systems with signaling pathways in cancer and development.  相似文献   

20.
Li J  Wu Y  Qian X  Sha B 《The Biochemical journal》2006,398(3):353-360
Heat shock protein (Hsp) 40 facilitates the critical role of Hsp70 in a number of cellular processes such as protein folding, assembly, degradation and translocation in vivo. Hsp40 and Hsp70 stay in close contact to achieve these diverse functions. The conserved C-terminal EEVD motif in Hsp70 has been shown to regulate Hsp40-Hsp70 interaction by an unknown mechanism. Here, we provide a structural basis for this regulation by determining the crystal structure of yeast Hsp40 Sis1 peptide-binding fragment complexed with the Hsp70 Ssa1 C-terminal. The Ssa1 extreme C-terminal eight residues, G634PTVEEVD641, form a beta-strand with the domain I of Sis1 peptide-binding fragment. Surprisingly, the Ssa1 C-terminal binds Sis1 at the site where Sis1 interacts with the non-native polypeptides. The negatively charged residues within the EEVD motif in Ssa1 C-terminal form extensive charge-charge interactions with the positively charged residues in Sis1. The structure-based mutagenesis data support the structural observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号