首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aphanomyces cochlioides zoospores show chemotaxis to cochliophilin A (5-hydroxy-6,7-methylenedioxyflavone, 1), a host derived attractant, and also respond to 5,7-dihydroxyflavone (2) known as an equivalent chemoattractant. To investigate the chemotactic receptors in the zoospores, we designed photoaffinity probes 4'-azido-5,7-dihydroxyflavone (3) and 4'-azido-7-O-biotinyl-5-hydroxyflavone (4) considering chemical structure of 2. Both 3 and 4 had zoospore attractant activity which was competitive with that of 1. When zoospores were treated with the biotinylated photoaffinity probe followed by UV irradiation and streptavidin-gold or peroxidase-conjugated streptavidin, probe-labeled proteins were detected on the cell membrane. This result indicated that the 1-specific-binding proteins, a candidate for hypothetical cochliophilin A receptor, were localized on the cell membrane of the zoospores. This is the first experimental evidence of flavonoid-binding proteins being present in zoospores, using chemically synthesized azidoflavone as photoaffinity-labeling reagent.  相似文献   

2.
Zoospores of phytopathogenic fungi accumulate at the potential infection sites of host roots by chemotaxis. The aggregated spores then adhere, encyst, germinate, and finally penetrate into the root tissues to initiate infection. Some of the host-specific attractants have already been identified. The host-specific attractants also induce cell differentiation of certain zoospores under laboratory conditions. This indicates that a signal released from the roots of the host plant guides the pest propagules for orientation and prepares them for establishing a host-pathogen relationship by necessary physiological changes. Some non-host plant secondary metabolites were found to markedly regulate behavior and viability of zoospores, suggesting that non-host compounds may also play a role in protecting the non-host plants from the attack of zoosporic fungi. We hypothesized that zoospores perceive the host signal(s) by specific G-protein-coupled receptors and translate it into responses by way of the phosphoinositide-Ca2+ signaling cascade. The details of the signal transduction mechanism in fungal zoospores are yet to be discovered. In this report, we review the signaling and communications between phytopathogenic fungal zoospores and host and non-host plants with special reference to Aphanomyces cochlioides.  相似文献   

3.
We found that the gradient of a host-specific attractant, cochliophilin A (5-hydroxy-6,7-methylenedioxyflavone) isolated from the roots of spinach triggered encystment followed by germination of zoospores of Aphanomyces cochlioidesat a concentration less than micromolar order. This compound did not affect the growth and reproduction of this phytopathogen up to 10–6 M concentration in the culture medium. We also observed that mastoparan, an activator of heterotrimeric G-protein could inhibit the motility of zoospores and then strikingly effect encystment followed by 60–80% germination of cysts. Concomitant application of cochliophilin A and mastoparan showed stronger encystment followed by 100% germination of cysts. In addition, we have observed that chemicals interfering with phospholipase C activity (neomycin) and Ca2+ influx/release (EGTA and loperamide) suppress cochliophilin A or mastoparan induced encystment and germination. These results suggest that G-protein mediated signal transduction mechanism may be involved in the differentiation of the A. cochlioides zoospores. This is the first report on the differentiation of oomycete zoospores initiated by a host-specific plant signal or a G-protein activator.  相似文献   

4.
A bioassay-guided survey of spinach leaf constituents resulted in 5,4'-dihydroxy-3,3'-dimethoxy-6,7-methylenedioxyflavone being identified as the third naturally-occurring attractant in the host plant toward the zoospores of its pathogen, Aphanomyces cochlioides. The isolate showed attracting activity around Chromosorb W AW particles (60-80 mesh) coated with a 10(-5) M solution in a zoospore suspension. However, this activity was 1/100-1/1000 less than that of cochliophilin A, an attractant in the roots of spinach. Bioassays with the present isolate and related compounds revealed that 5,3',4'-trihydroxy-3-methoxy-6,7-methylenedioxyflavone did not possess attractant activity, but rather weak antagonistic activity toward the former two attractants from spinach.  相似文献   

5.
The onset and progressive pathogenesis of periodontal disease is thought to be initiated by the entry of Aggregatibacter actinomycetemcomitans (Aa) into periodontal tissue, especially gingival epithelium. Nonetheless, the mechanism underlying such bacterial entry remains to be clarified. Therefore, this study aimed to investigate the possible role of Aa outer membrane protein 29 kD (Omp29), a homologue of E. coli OmpA, in promoting bacterial entry into gingival epithelial cells. To accomplish this, Omp29 expression vector was incorporated in an OmpA-deficient mutant of E. coli. Omp29(+)/OmpA(-) E. coli demonstrated 22-fold higher entry into human gingival epithelial line cells (OBA9) than Omp29(-)/OmpA(-) E. coli. While the entry of Aa and Omp29(+)/OmpA(-) E. coli into OBA9 cells were inhibited by anti-Omp29 antibody, their adherence to OBA9 cells was not inhibited. Stimulation of OBA9 cells with purified Omp29 increased the phosphorylation of focal adhesion kinase (FAK), a pivotal cell-signaling molecule that can up-regulate actin rearrangement. Furthermore, Omp29 increased the formation of F-actin in OBA9 cells. The internalization of Omp29-coated beads and the entry of Aa into OBA9 were partially inhibited by treatment with PI3-kinase inhibitor (Wortmannin) and Rho GTPases inhibitor (EDIN), both known to convey FAK-signaling to actin-rearrangement. These results suggest that Omp29 is associated with the entry of Aa into gingival epithelial cells by up-regulating F-actin rearrangement via the FAK signaling pathway.  相似文献   

6.
Bacterial Type I restriction‐modification (R‐M) systems present a major barrier to foreign DNA entering the bacterial cell. The temperate phage P1 packages several proteins into the virion that protect the phage DNA from host restriction. Isogenic P1 deletion mutants were used to reconstitute the previously described restriction phenotypes associated with darA and darB. While P1ΔdarA and P1ΔdarB produced the expected phenotypes, deletions of adjacent genes hdf and ddrA also produced darA‐like phenotypes and deletion of ulx produced a darB‐like phenotype, implicating several new proteins of previously unknown function in the P1 dar antirestriction system. Interestingly, disruption of ddrB decreased P1's sensitivity to EcoB and EcoK restriction. Proteomic analysis of purified virions suggests that packaging of antirestriction components into P1 virions follows a distinct pathway that begins with the incorporation of DarA and Hdf and concludes with DarB and Ulx. Electron microscopy analysis showed that hdf and darA mutants also produce abnormally high proportions of virions with aberrant small heads, which suggests Hdf and DarA play a role in capsid morphogenesis. The P1 antirestriction system is more complex than previously realized and is comprised of multiple proteins including DdrA, DdrB, Hdf, and Ulx in addition to DarA and DarB.  相似文献   

7.
Ras is a key signal transduction protein in the cell. Mutants of Gly(12) and Gln(61) impair GTPase activity and are found prominently in cancers. In wild type Ras-GTP, an allosteric switch promotes disorder to order transition in switch II, placing Gln(61) in the active site. We show that the "on" and "off" conformations of the allosteric switch can also be attained in RasG12V and RasQ61L. Although both mutants have similarly impaired active sites in the on state, RasQ61L stabilizes an anti-catalytic conformation of switch II in the off state of the allosteric switch when bound to Raf. This translates into more potent activation of the MAPK pathway involving Ras, Raf kinase, MEK, and ERK (Ras/Raf/MEK/ERK) in cells transfected with RasQ61L relative to RasG12V. This differential is not observed in the Raf-independent pathway involving Ras, phosphoinositide 3-kinase (PI3K), and Akt (Ras/PI3K/Akt). Using a combination of structural analysis, hydrolysis rates, and experiments in NIH-3T3 cells, we link the allosteric switch to the control of signaling in the Ras/Raf/MEK/ERK pathway, supporting a GTPase-activating protein-independent model for duration of the Ras-Raf complex.  相似文献   

8.
The determinants of tumor cell susceptibility to NK cell-mediated cytolysis were analyzed in a two stage model. The binding of tumor cells to NK effectors was measured by target-effector conjugation and cold target competition in 51Cr-release assays, whereas triggering was measured by assaying phospholipid methylation in NK cells stimulated by intact targets. Representative targets could be grouped into three phenotypes based on the data. Those such as YAC 1.2 could bind and trigger NK cells whereas the mutagenized variant, YAC 6.28.8, could bind but was unable to trigger NK cells and therefore resisted lysis. The third phenotype was represented by HL-60 which could neither bind nor trigger NK cells and was therefore completely NK resistant. The oligosaccharide nature of the triggering molecules was demonstrated by showing that purified, high mannose containing, asparagine-linked oligosaccharides from tumor cell targets were potent stimulators of NK transmethylation at submicromolar levels. Tunicamycin pretreatment of target cells inhibited their triggering capacity but not their NK binding function. These results suggest a double restriction in NK specificity involving two independent but sequential stages in recognition represented in binding and triggering by asn-linked oligosaccharides on the tumor cell surface.  相似文献   

9.
Many molecules are inducibly localized in lipid rafts, and their alteration inhibits early activation events, supporting a critical role for these domains in signaling. Using confocal microscopy and cellular fractionation, we have shown that the pool of Bad, attached to lipid rafts in proliferating cells, is released when cells undergo apoptosis. Kinetic studies indicate that rafts alteration is a consequence of an intracellular signal triggered by interleukin-4 deprivation. Growth factor deprivation in turn induces PP1alpha phosphatase activation, responsible for cytoplasmic Bad dephosphorylation as well as caspase-9 and caspase-3 activation. Caspases translocate to rafts and induce their modification followed by translocation of Bad from rafts to mitochondria, which correlates with apoptosis. Taken together, our results suggest that alteration of lipid rafts is an early event in the apoptotic cascade indirectly induced by interleukin-4 deprivation via PP1alpha activation, dephosphorylation of cytoplasmic Bad, and caspase activation.  相似文献   

10.
11.
An ulcer is a deep necrotic lesion penetrating through the entire thickness of the gastrointestinal mucosa and muscularis mucosae. Ulcer healing is a complex and tightly regulated process of filling the mucosal defect with proliferating and migrating epithelial and connective tissue cells. This process includes the re-establishment of the continuous surface epithelial layer, glandular epithelial structures, microvessels and connective tissue within the scar. Epithelial cells in the mucosa of the ulcer margin proliferate and migrate onto the granulation tissue to re-epithelialize the ulcer. Growth factors, such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), trefoil peptides (TP), platelet derived growth factor (PDGF) and other cytokines produced locally by regenerating cells, control re-epithelialization and the reconstruction of glandular structures. These growth factors, most notably EGF, trigger epithelial cell proliferation via signal transduction pathways involving EGF-R- MAP (Erk1/Erk2) kinases. Granulation tissue, which develops at the ulcer base, consists of fibroblasts, macrophages and proliferating endothelial cells, which form microvessels under the control of angiogenic growth factors. These growth factors [bFGF, vascular endothelial growth factor (VEGF) and angiopoietins] promote angiogenesis--capillary vessel formation--thereby allowing for the reconstruction of microvasculature in the mucosal scar, which is essential for delivery of oxygen and nutrients to the healing site. The primary trigger to activate expression of angiogenic growth factors and their receptors appears to be hypoxia. During ulcer healing expression of growth factor genes is tightly regulated in a temporally and spatially ordered manner.  相似文献   

12.
The nodulin/glutamine synthetase-like protein (NodGS) that we identified proteomically in Arabidopsis thaliana is a fusion protein composed of an N-terminal amidohydrolase domain that shares homology with nodulins and a C-terminal domain of prokaryotic glutamine synthetase type I. The protein is homologous to the FluG protein, a morphogenetic factor in fungi. Although genes encoding NodGS homologues are present in many plant genomes, their products have not yet been characterized. The Arabidopsis NodGS was present in an oligomeric form of ~700-kDa, mainly in the cytosol, and to a lesser extent in the microsomal membrane fraction. The oligomeric NodGS was incorporated into large heterogeneous protein complexes >700 kDa and partially co-immunoprecipitated with γ-tubulin. In situ and in vivo microscopic analyses revealed a NodGS signal in the cytoplasm, with endomembranes, particularly in the perinuclear area. NodGS had no detectable glutamine synthetase activity. Downregulation of NodGS by RNAi resulted in plants with a short main root, reduced meristematic activity and disrupted development of the root cap. Y2H analysis and publicly available microarray data indicated a role for NodGS in biotic stress signalling. We found that flagellin enhanced the expression of the NodGS protein, which was then preferentially localized in the nuclear periphery. Our results point to a role for NodGS in root morphogenesis and microbial elicitation. These data might help in understanding the family of NodGS/FluG-like fusion genes that are widespread in prokaryotes, fungi and plants.  相似文献   

13.
Dystrophin has been shown to be associated in cells with actin bundles. Dys-246, an N-terminal recombinant protein encoding the first 246 residues of dystrophin, includes two calponin-homology (CH) domains, and is similar to a large class of F-actin cross-linking proteins including alpha-actinin, fimbrin, and spectrin. It has been shown that expression or microinjection of amino-terminal fragments of dystrophin or the closely related utrophin resulted in the localization of these protein domains to actin bundles. However, in vitro studies have failed to detect any bundling of actin by either intact dystrophin or Dys-246. We show here that the structure of F-actin can be modulated so that there are two modes of Dys-246 binding, from bundling actin filaments to only binding to single filaments. The changes in F-actin structure that allow Dys-246 to bundle filaments are induced by covalent modification of Cys-374, proteolytic cleavage of F-actin's C-terminus, mutation of yeast actin's N-terminus, and different buffers. The present results suggest that F-actin's structural state can have a large influence on the nature of actin's interaction with other proteins, and these different states need to be considered when conducting in vitro assays.  相似文献   

14.
Naturalized plant species disperse their populations over considerable distances to become invasive. We tested the hypothesis that this shift from naturalization to invasion is facilitated by increased investment of resources in seed dispersal appendages, using an assemblage of naturalized plants of south-eastern Australia. Compared with non-invasive species, we found in both cross-species and independent-contrasts analyses that invasive species invested more heavily in seed dispersal appendages, regardless of the structure present on the seed associated with the mode of dispersal (e.g., wings versus fleshy fruits). Invasive species such as Lonicera japonica, Hedera Helix and Acetosa sagittata were found to invest as much as 60–70% of total diaspore mass in dispersal appendages. The positive relationship between dispersal investment and invasion success was still prevalent after controlling for the effects of plant growth form, seed mass and capacity for vegetative growth. Our findings demonstrate that a plant’s investment in dispersal appendages helps to overcome the dispersal barrier in the shift from naturalization to invasion.  相似文献   

15.
The binding of cytochalasin B (CB) to F-actin was studied using a trace amount of [3H]-cytochalasin B. F-Actin-bound CB was separated from free CB by ultracentrifugation and the amount of F-actin-bound CB was determined by comparing the radioactivity both in the supernatant and in the precipitate. A filament of pure F-actin possessed one high-affinity binding site for CB (Kd = 5.0 nM) at the B-end. When the filament was bound to native tropomyosin (complex of tropomyosin and troponin), two low-affinity binding sites for CB (Kd = 230 nM) were created, while the high-affinity binding site was reserved (Kd = 3.4 nM). It was concluded that the creation of low-affinity binding sites was primarily due to binding of tropomyosin to F-actin, as judged from the following two observations: (1) a filament of F-actin/tropomyosin complex possessed one high-affinity binding site (Kd = 3.9 nM) plus two low-affinity binding sites (Kd = 550 nM); (2) the Ca2(+)-receptive state of troponin C in F-actin/native tropomyosin complex did not affect CB binding.  相似文献   

16.
We report the unexpected novel finding that exogenously supplied atmospheric NO2 at an ambient concentration is a plant vitalization signal to double shoot size and the contents of cell constituents. When seedlings of Nicotiana plumbaginifolia were grown for 10 wk under natural light and irrigation with 10 mm KNO3 in air containing (+NO2 plants) or not containing (-NO2 plants) 15NO2 (150 +/- 50 ppb), shoot biomass, total leaf area, and contents per shoot of carbon (C), nitrogen (N), sulphur (S), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), free amino acids and crude proteins were all approximately 2 times greater in +NO2 plants than in -NO2 plants. In mass spectrometric analysis of the 15N/14N ratio, it was found that NO2-derived N (NO2-N) comprised < 3% of total plant N, indicating that the contribution of NO2-N to total N was very minor. It thus seems very likely that the primary role of NO2 is as a multifunctional signal to stimulate plant growth, nutrient uptake and metabolism.  相似文献   

17.
18.
Recovery from swelling of hepatocytes and selected other epithelia is triggered by intracellular Ca(2+) release from the endoplasmic reticulum, which leads to fluid and electrolyte efflux through volume-sensitive K(+) and Cl(-) channels. The aim of this study was to determine the mechanisms responsible for swelling-mediated hepatocellular Ca(2+) mobilization. Swelling of HTC rat hepatoma cells, evoked by exposure to hypotonic medium, elicited transient increases in intracellular levels of inositol 1,4,5-trisphosphate (IP(3)) and cytosolic [Ca(2+)]. The latter was attenuated by inhibition of phospholipase C (PLC) with and by IP(3) receptor blockade with 2-aminoethoxydiphenyl borate, but it was unaffected by ryanodine, an inhibitor of intracellular Ca(2+)-induced Ca(2+) release channels. Hypotonic swelling was associated with a transient increase in tyrosine phosphorylation of PLCgamma, with kinetics that paralleled the increases in intracellular IP(3) levels and cytosolic [Ca(2+)]. Confocal imaging of HTC cells exposed to hypotonic medium revealed a swelling-induced association of tyrosine-phosphorylated PLCgamma with the plasma membrane. These findings suggest that activation of PLCgamma by hepatocellular swelling leads to the generation of IP(3) and stimulates discharge of Ca(2+) from the endoplasmic reticulum via activation of IP(3) receptors. By extension, these data support the concept that tyrosine phosphorylation of PLCgamma represents a critical step in adaptive responses to hepatocellular swelling.  相似文献   

19.
In the yeast Saccharomyces cerevisiae, ultradian oscillations of energy metabolism have been observed in continuous cultures. Here, we found that the level of the GTS1 gene product oscillated in concert with the ultradian rhythm of energy metabolism. When GTS1 was inactivated by gene disruption, the metabolic oscillation was affected severely, mostly disappearing within a day, in the absence of synchronized stress-response oscillations throughout the continuous culture. The disappearance of biological rhythms in the GTS1-deleted mutant was substantially rescued by transformation with chimera plasmids carrying GTS1 under the control of GTS1's own promoter. On the other hand, this disappearance was not rescued by constitutive expression of GTS1 under the control of the triose phosphate isomerase promoter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号