首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photocycle of bacteriorhodopsin (BR) was studied in the 0.3 microsecond to 10 s time interval after excitation, using a wide range of actinic light intensities (10 ns half-duration, 0.06-60 mJ/cm2), at neutral and alkaline pH values. The relative weights of the rapidly and the slowly decaying components of the M intermediate (Mf and M(s), respectively) and the yield of the third millisecond component, N(R,P), are the function of the exciting light intensity (density), while their lifetimes are not. The relative weight of M(s) is found to be a linear function of the portion of the BR molecules undergoing the photocycle. This suggests the existence of a cooperative interaction of the BR molecules arranged in the crystalline purple membrane sheets. Another source of M(s) is also found, which results a nonvanishing relative weight of M(s) even at very weak actinic light density values. The explanation for this may be a branching, or the heterogeneity of BR itself or with its environment. It is shown that the relative weights of the rising and decaying components of the M form(s) do not correlate directly with each other.  相似文献   

2.
The actinic light effect on the bacteriorhodopsin (BR) photocycle kinetics led to the assumption of a cooperative interaction between the photocycling BR molecules. In this paper we report the results of the actinic light effect and pH on the proton release and uptake kinetics. An electrical method is applied to detect proton release and uptake during the photocycle [E. Papp, G. Fricsovszky, J. Photochem. Photobiol. B: Biol. 5 (1990) 321]. The BR photocycle kinetics was also studied by absorption kinetics measurements at 410 nm and the data were analyzed by the local analysis of the M state kinetics [E. Papp, V.H. Ha, Biophys. Chem. 57 (1996) 155]. While at high pH and ionic strength, we found a similar behavior as reported earlier, at low ionic strength the light effect proved to be more complex. The main conclusions are the following: Though the number of BR excited to the photocycle (fraction cycling, fc) goes to saturation with increasing laser pulse energy, the absorbed energy by BR increases linearly with pulse energy. From the local analysis we conclude that the light effect changes the kinetics much earlier, already at the L intermediate state decay. The transient electric signal, caused by proton release and uptake, can be decomposed into two components similarly to the absorption kinetic data of the M intermediate state. The actinic light energy affects mainly the ratio of the two components and the proton movements inside BR while pH has an effect on the kinetics of the proton release and uptake groups at the membrane surface.  相似文献   

3.
Dark and light adaptation of bacteriorhodopsin in purple membrane multilayers at less than 100% relative humidity differs from that seen in suspensions. Equilibrium between the two bacteriorhodopsin isomers (bR cis 550 and bR trans 570) in the light-adapted state becomes dependent on the wavelength of actinic light. Excitation at the red edge of the visible absorption band causes dark adaptation in a light-adapted sample. Using polarized actinic and measuring light, we show that acceleration of the dark adaptation through heating by actinic light cannot explain this observation. A light-driven bR trans 570 to bR cis 550 reaction that competes with the well-known 13 cis-to-all-trans light adaptation reaction must exist under our experimental conditions. Trans-to-cis conversion is a one-photon process distinct from the two photon process observed by others in purple membrane suspensions (Sperling, W., C. N. Rafferty, K. D. Kohl, and N. A. Dencher, 1978, FEBS (Fed. Eur. Biochem. Soc.) Lett. 97:129-132). Its quantum efficiency increases monotonously on reducing the hydration level, and is paralleled by an increase in the lifetime of the M410 intermediate of the trans photocycle. We suggest that at this point a branch leads from the all-trans into the 13-cis photocycle. It is probably the same reaction that causes the reduced light adaptation in monomeric bacteriorhodopsin (Casadio, R., H. Gutowitz, P. Mowery, M. Taylor, and W. Stoeckenius, 1980, Biochim. Biophys. Acta. 590:13-23; Casadio, R., and W. Stoeckenius, 1980, Biochemistry. 19:3374-3381).  相似文献   

4.
Bacteriorhodopsin (BR) with the single-site substitutions Arg-82----Gln (R82Q), Asp-85----Asn (D85N), and Asp-96----Asn (D96N) is studied with time-resolved absorption spectroscopy in the time regime from nanoseconds to seconds. Time-resolved spectra are analyzed globally by using multiexponential fitting of the data at multiple wavelengths and times. The photocycle kinetics for BR purified from each mutant are determined for micellar solutions in two detergents, nonyl glucoside and CHAPSO, and are compared to results from studies on delipidated BR (d-BR) in the same detergents. D85N has a red-shifted ground-state absorption spectrum, and the formation of an M intermediate is not observed. R82Q undergoes a pH-dependent transition between a purple and a blue form with different pKa values in the two detergents. The blue form has a photocycle resembling that for D85N, while the purple form of R82Q forms an M intermediate that decays more rapidly than in d-BR. The purple form of R82Q does not light-adapt to the same extent as d-BR, and the spectral changes in the photocycle suggest that the light-adapted purple form of R82Q contains all-trans- and 13-cis-retinal in approximately equal proportions. These results are consistent with the suggestions of others for the roles of Arg-82 and Asp-85 in the photocycle of BR, but results for D96N suggest a more complex role for Asp-96 than previously suggested. In nonyl glucoside, the apparent decay of the M-intermediate is slower in D96N than in d-BR, and the M decay shows biphasic kinetics. However, the role of Asp-96 is not limited to the later steps of the photocycle. In D96N, the decay of the KL intermediate is accelerated, and the rise of the M intermediate has an additional slow phase not observed in the kinetics of d-BR. The results suggest that Asp-96 may play a role in regulating the structure of BR and how it changes during the photocycle.  相似文献   

5.
Z Tokaji  Z Dancsházy 《FEBS letters》1991,281(1-2):170-172
The relative weight of the slowly decaying M intermediate of the photocycle of bacteriorhodopsin increases upon increasing the energy density of the short (10 ns) actinic laser pulse. Moreover, when a pre-exciting flash is applied to the BR sample, the absolute amplitude of the Ms is higher in the signal induced by a second flash, applied with a delay from 100 microseconds to 100 ms. These facts together prove that either the leftover BR ground-state population becomes different due to the pre-excitation, or there is a cooperative interaction between the BR molecules.  相似文献   

6.
Tateishi Y  Abe T  Tamogami J  Nakao Y  Kikukawa T  Kamo N  Unno M 《Biochemistry》2011,50(12):2135-2143
Sensory rhodopsin II is a seven transmembrane helical retinal protein and functions as a photoreceptor protein in negative phototaxis of halophilic archaea. Sensory rhodopsin II from Natronomonas pharaonis (NpSRII) is stable under various conditions and can be expressed functionally in Escherichia coli cell membranes. Rhodopsins from microorganisms, known as microbial rhodopsins, exhibit a photocycle, and light irradiation of these molecules leads to a high-energy intermediate, which relaxes thermally to the original pigment after passing through several intermediates. For bacteriorhodopsin (BR), a light-driven proton pump, the photocycle is established as BR → K → L → M → N → O → BR. The photocycle of NpSRII is similar to that of BR except for N, i.e., M thermally decays into the O, and N has not been well characterized in the photocycle. Thus we here examined the second half of the photocycle in NpSRII, and in the present transient absorption study we found the formation of a new photointermediate whose absorption maximum is ~500 nm. This intermediate becomes pronounced in the presence of azide, which accelerates the decay of M. Transient resonance Raman spectroscopy was further applied to demonstrate that this intermediate contains a 13-cis retinal protonated Schiff base. However, detailed analysis of the transient absorption data indicated that M-decay does not directly produce N but rather produces O that is in equilibrium with N. These observations allowed us to propose a structural model for a photocycle that involves N.  相似文献   

7.
Liu Y  Edens GJ  Grzymski J  Mauzerall D 《Biochemistry》2008,47(29):7752-7761
The volume and enthalpy changes associated with proton translocation steps during the bacteriorhodopsin (BR) photocycle were determined by time-resolved photopressure measurements. The data at 25 degrees C show a prompt increase in volume followed by two further increases and one decrease to the original state to complete the cycle. These volume changes are decomposed into enthalpy and inherent volume changes. The positive enthalpy changes support the argument for inherent entropy-driven late steps in the BR photocycle [Ort, D. R., and Parson, W. M. (1979) Enthalpy changes during the photochemical cycle of bacteriorhodopsin. Biophys. J. 25, 355-364]. The volume change data can be interpreted by the electrostriction effect as charges are canceled and formed during the proton transfers. A simple glutamic acid-glutamate ion model or a diglutamate-arginine-protonated water charge-delocalized model for the proton-release complex (PRC) fit the data. A conformational change with a large positive volume change is required in the slower rise (M --> N of the optical cycle) step and is reversed in the decay (N --> O --> BR) steps. The large variation in the published values for both the volume and enthalpy changes is greatly ameliorated if the values are presented per absorbed photon instead of per mole of BR. Thus, it is the highly differing assumptions about the quantum or reaction yields that cause the variations in the published results.  相似文献   

8.
The membrane protein bacteriorhodopsin (BR) can be kept soluble in its native state for months in the absence of detergent by amphipol (APol) A8-35, an amphiphilic polymer. After an actinic flash, A8-35-complexed BR undergoes a complete photocycle, with kinetics intermediate between that in detergent solution and that in its native membrane. BR/APol complexes form well defined, globular particles comprising a monomer of BR, a complete set of purple membrane lipids, and, in a peripheral distribution, ∼2 g APol/g BR, arranged in a compact layer. In the absence of free APol, BR/APol particles can autoassociate into small or large ordered fibrils.  相似文献   

9.
The impact of a heterogeneous distribution of actinic light within a leaf chamber for photosynthetic measurements by gas exchange on the photosynthesis-irradiance relationship was investigated. High-resolution light distributions were measured over the area of a commercially available clamp-on leaf chamber equipped with build-in red and blue LEDs, as well as over the area of a custom-made leaf chamber with external light source, using a low-cost digital camera and freely available software. The impact of the measured heterogeneity on the photosynthesis-irradiance response curve was calculated for two realistic scenarios. When the average light intensity over the leaf chamber area was estimated accurately, heterogeneity had minor effects on the photosynthesis-irradiance response curve. However, when the irradiance was measured in the chamber centre, which is common practice, and assumed to be homogeneous, for both leaf chambers the photosynthesis-irradiance response curve was subject to considerable error and led to serious underestimation of the light-limited quantum yield of photosynthesis. Additionally, mixed light sources with different heterogeneity patterns per light source, such as in the clamp-on leaf chamber, potentially increase errors due to heterogeneous physiological responses to light spectrum. High-resolution quantification of the leaf-chamber light distribution enables calculation of the correct average light intensity and already resolves the most pressing problems associated with heterogeneity. To exclude any light-distribution related errors in gas-exchange measurements a leaf chamber and actinic irradiance source design with a homogeneous light distribution is an absolute requirement.  相似文献   

10.
菌紫质(BR)是嗜盐菌紫膜中的唯一蛋白质,野生型的BR分子含有248个氨基酸残基,其中一个视黄醛通过希夫碱基连结在第216位赖氨酸上,它具有质子泵的功能.光照下,BR进行光循环,光循环又与质子泵过程相关联.菌紫质的结构和功能方面的研究已有很大进展,但其光循环途径和质子泵的机理还不太清楚.文章概述了近年来对菌紫质结构,光循环和质子泵机理研究的进展,尤其对争论较大的菌紫质光循环途径的四类模型作了较详细的介绍.  相似文献   

11.
Hendler RW  Meuse CW 《Biochemistry》2008,47(19):5396-5405
The parallel model for the bacteriorhodopsin (BR) photocycle at neutral pH and a temperature near 20 degrees C contains an M-fast cycle with steps BR-->K-->L-->Mf-->N-->O-->BR and an M-slow cycle which contains steps BR-->K-->L-->Ms-->BR. With increasing actinic laser strength, the M-fast cycle at first rises faster than the M-slow cycle, but reaches saturation sooner and at a lower level than the M-slow cycle. The O-intermediate shows the same saturation behavior as Mf. In this paper, we show that the peak current of proton flux and the apparent voltages developed by this flux show the same saturation behavior as Ms, which is very different from that of both M f and O. It is further shown that most of the proton-charge displacement is connected with the step Ms-->BR. The optical and electrical data in these studies were collected simultaneously by a newly designed and built spectrometer which is described separately.  相似文献   

12.
Polymer films made with photosensitive chromophore protein bacteriorhodopsin (BR) from the extreme halophile Halobacterium salinarium as well as films made with BR derivatives exhibit a nonlinear photoinduced anisotropy. Two different methods can be used to induce anisotropy in polymer BR films. The first method is based on the anisotropic properties of the initial form of the photocycle, BR570 (B-type anisotropy). Another method is based on the anisotropic properties of the longest-lived photocycle intermediate M412 (M-type anisotropy). CW gas lasers were employed to induce a reversible anisotropy in polymer BR films. Nonlinear photoinduced anisotropy is discussed in the context of a model for the anisotropic photoselection of BR molecules under linearly polarized light. A comparison of the experimental dependencies of nonlinear photoinduced anisotropy on laser intensity with similar calculated dependencies enables one to determine the molecular dichroism of BR and its derivatives not only for the initial form of the photocycle, B but also for the longest-lived intermediate M. Here we present the data showing the correlation between the laser induced nonlinear anisotropic properties and chromophore/protein interactions in BR. The effect of polymer binder on the nonlinear photoanisotropic properties of polymer BR films is also described.  相似文献   

13.
Dancsházy Z  Tokaji Z 《FEBS letters》2000,476(3):171-173
Photobleaching of bacteriorhodopsin (BR) by continuous light has recently been demonstrated. This bleaching consists of at least two subsequent product states. One of them is absorbing maximally in the blue spectral region. Our present study shows that upon illumination of the bleached sample with blue light a back photoprocess appears, resulting in regeneration of the original BR state. From a technical point of view, the observed phenomenon is similar to the reverting effect of blue light on the photocycle. An important difference is that the photobleached state of BR is much more stable than any of the photocycle intermediates, and may provide an advantage for several technical applications.  相似文献   

14.
G Váró  J K Lanyi 《Biochemistry》1990,29(9):2241-2250
The photocycle of bacteriorhodopsin (BR) was studied at alkaline pH with a gated multichannel analyzer, in order to understand the origins of kinetic complexities in the rise and decay of the M intermediate. The results indicate that the biphasic rise and decay kinetics are unrelated to a photoreaction of the N intermediate of the BR photocycle, proposed earlier by others [Kouyama et al. (1988) Biochemistry 27, 5855-5863]. Rather, under conditions where N did not accumulate in appreciable amounts (high pH, low salt concentration), they were accounted for by conventional kinetic schemes. These contained reversible interconversions, either M in equilibrium with N in one of two parallel photocycles or L in equilibrium with as well as M in equilibrium with N in a single photocycle. Monomeric BR also showed these kinetic complications. Conditions were then created where N accumulated in a photo steady state (high pH, high salt concentration, background illumination). The apparent increase in the proportion of the slow M decay component by the background illumination could be quantitatively accounted for with the single photocycle model, by the mixing of the relaxation of the background light induced photo steady state with the inherent kinetics of the photocycle. Postulating a new M intermediate which is produced by the photoreaction of N was neither necessary nor warranted by the data. The difference spectra suggested instead that absorption of light by N generates only one intermediate, observable between 100 ns and 1 ms, which absorbs near 610 nm. Thus, the photoreaction of N resembles in some respects that of BR containing 13-cis-retinal.  相似文献   

15.
16.
两种状态细菌视紫红质光循环中间产物与pH的关系   总被引:5,自引:4,他引:1  
本文主要用微机控制的毫秒级闪光动力学光谱仪研究含三体细菌视紫红质(Bacteriorhodopsin,简称BR)的紫膜碎片和含单体BR的DMPC(dimyristoyl-Phosphatidyl-choline)脂质囊泡在不同pH条件下光循环中间产物M_(412)和O_(640)的变化,研究结果表明:BR单体与其三体状态相比,BR单体的光循环中间产物M_(412)的产量受介质pH变化的影响较大,其慢衰减成份的衰减比三体BR慢3—10倍.说明单体BR的结构状态较易受PH影响,单体BR光循环中间产物O_(640)随pH变化的趋势与三体BR的有很大区别,可能是由于不同状态的BR受pH的影响,但其具有不同的构型,导致光循环途径的变化.  相似文献   

17.
《BBA》1987,893(1):60-68
The electrical activity of bacteriorhodopsin (BR) containing the 13-substituted retinal analogues 13-demethyl and 13-methoxy as well as the naturally occurring retinal carrying a methyl group at C13 is compared. White membrane patches reconstituted with the different retinals are attached to a black lipid membrane, and the dependency of the photocurrent on light intensity is measured. This allows a comparison of the overall photocycle time and the number of protons transported per cycle for the various preparations. From previous work (Gärtner, W., Towner, P., Hopf, H. and Oesterhelt, D. (1983) Biochem. 22, 2637–2644, see also Gärtner, W. and Oesterhelt, D., unpublished data) the equilibrium isomeric distribution (all-trans and 13-cis) of the different retinals in the binding site is known. Taking into account that only all-trans retinal BR contributes to the pumping activity (Fahr, A. and Bamberg, E. (1982) FEBS Lett. 140, 251–253), it is shown, that the cycle time for the modified BRs is moderately changed, whereas the number of protons transported per cycle and transporting all-trans BR molecule is not affected by the substituent. It is concluded, that substituting the methyl group at position 13 of the retinal molecule by a hydrogen atom or a methoxy group only slightly affects the pumping activity of the trans-photocycle, but rather controls the biological function of BR via the equilibrium isomeric distribution of the retinal molecule in the binding site.  相似文献   

18.
Halobacterium sp. GRB (Ebert, K., Goebel, W., and Pfeifer, F. (1984) Mol. & Gen. Genet. 194, 91-97) was used to isolate bacteriorhodopsin (BR) mutants. A procedure is described which allows the enrichment of any type of mutant unable to grow under the selection conditions applied. Its use for the isolation of phototrophically negative, retinal-positive mutants of Halobacterium sp. GRB is demonstrated. Single-cell clones of this phenotype were further characterized. The expression of bacterioopsin was tested with a monoclonal antibody directed against the C terminus of the protein. The expressed bacteriorhodopsins were characterized by their specific activity for proton pumping, their spectral properties, and photocycle kinetics. About 15 independent mutants carrying bacteriorhodopsins of three distinct phenotypic classes could be isolated, including BR with a different absorption maximum, BR of lower specific activity, and BR characterized by a slower photocycle and a lack of proton pumping activity.  相似文献   

19.
Melanopsin is the photopigment of mammalian intrinsically photosensitive retinal ganglion cells, where it contributes to light entrainment of circadian rhythms, and to the pupillary light response. Previous work has shown that the melanopsin photocycle is independent of that used by rhodopsin (Tu, D. C., Owens, L. A., Anderson, L., Golczak, M., Doyle, S. E., McCall, M., Menaker, M., Palczewski, K., and Van Gelder, R. N. (2006) Inner retinal photoreception independent of the visual retinoid cycle. Proc. Natl. Acad. Sci. U.S.A. 103, 10426-10431). Here we determined the ability of apo-melanopsin, formed by ex vivo UV light bleaching, to use selected chromophores. We found that 9-cis-retinal, but not all-trans-retinal or 9-cis-retinol, is able to restore light-dependent ipRGC activity after bleaching. Melanopsin was highly resistant to both visible-spectrum photic bleaching and chemical bleaching with hydroxylamine under conditions that fully bleach rod and cone photoreceptor cells. These results suggest that the melanopsin photocycle can function independently of both rod and cone photocycles, and that apo-melanopsin has a strong preference for binding cis-retinal to generate functional pigment. The data support a model in which retinal is continuously covalently bound to melanopsin and may function through a reversible, bistable mechanism.  相似文献   

20.
The stages in the photocycle of bacteriorhodopsin (BR) involving the M and N intermediates are investigated using a double pulse excitation method. A first (cycling) pulse at 532 nm is followed, with an appropriate time delay, by a second pulse (337, 406, 446, or 470 nm) which induces the M-->BR back-photoreaction. After depletion by the second pulse a repopulation of M in the millisecond range is observed which is interpreted in terms of a thermal N-->M relaxation. It is thus concluded that a (thermal) M<-->N equilibrium accounts for the biphasic decay of M in the BR photocycle. Other models for this stage of the light-driven proton-pump are therefore unnecessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号