首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical model of an expanding asymmetric alveolated duct was developed and used to investigate lateral transport between the central acinar channel and the surrounding alveoli along the acinar tree. Our results indicate that some degree of recirculation occurs in all but the terminal generations. We found that the rate of diffusional transport of axial momentum from the duct to the alveolus was by far the largest contributor to the resulting momentum in the alveolar flow but that the magnitude of the axial momentum is critical in determining the nature of the flow in the alveolus. Further, we found that alveolar flow rotation, and by implication chaotic mixing, is strongest in the entrance generations. We also found that the expanding alveolus provides a pathway by which particles with little intrinsic motion can enter the alveoli. Thus, our results offer a possible explanation for why submicron particles deposit preferentially in the acinar-entrance region.  相似文献   

2.
Inhaled particles reaching the alveolar walls have the potential to cross the blood–gas barrier and enter the blood stream. Experimental evidence of pulmonary dosimetry, however, cannot be explained by current whole lung dosimetry models. Numerical and experimental studies shed some light on the mechanisms of particle transport, but realistic geometries have not been investigated. In this study, a three dimensional expanding model including two generations of respiratory bronchioles and five terminal alveolar sacs was created from a replica human lung cast. Flow visualization techniques were employed to quantify the fluid flow while utilizing streamlines to evaluate recirculation. Pathlines were plotted to track the fluid motion and estimate penetration depth of inhaled air. This study provides evidence that the two generations immediately proximal to the terminal alveolar sacs do not have recirculating eddies, even for intense breathing. Results of Peclet number calculations indicate that substantial convective motion is present in vivo for the case of deep breathing, which significantly increases particle penetration into the alveoli. However, particle diffusion remains the dominant mechanism of particle transport over convection, even for intense breathing because inhaled particles do not reach the alveolar wall in a single breath by convection alone. Examination of the velocity fields revealed significant uneven ventilation of the alveoli during a single breath, likely due to variations in size and location. This flow field data, obtained from replica model geometry with realistic breathing conditions, provides information to better understand fluid and particle behavior in the acinus region of the lung.  相似文献   

3.
4.
In a previous simulation, our laboratory demonstrated that the flow induced by a rhythmically expanding and contracting alveolus is highly complex (Haber S, Butler JP, Brenner H, Emanuel I, and Tsuda A, J Fluid Mech 405: 243-268, 2000). Based on these earlier findings, we hypothesize that the trajectories and deposition of aerosols inside the alveoli differ substantially from those previously predicted. To test this hypothesis, trajectories of fine particles (0.5-2.5 microm in diameter) moving in the foregoing alveolar flow field and simultaneously subjected to the gravity field were simulated. The results show that alveolar wall motion is crucial in determining the enhancement of aerosol deposition inside the alveoli. In particular, 0.5- to 1-microm-diameter particles are sensitive to the detailed alveolar flow structure (e.g., recirculating flow), as they undergo gravity-induced convective mixing and deposition. Accordingly, deposition concentrations within each alveolus are nonuniform, with preferentially higher densities near the alveolar entrance ring, consistent with physiological observations. Deposition patterns along the acinar tree are also nonuniform, with higher deposition in the first half of the acinar generations. This is a result of the combined effects of enhanced alveolar deposition in the proximal region of the acinus due to alveoli expansion and contraction and reduction in the number of particles remaining in the gas phase down the acinar tree. We conclude that the cyclically expanding and contracting motion of alveoli plays an important role in determining gravitational deposition in the pulmonary acinus.  相似文献   

5.
Low Reynolds number flows (Re<1) in the human pulmonary acinus are often difficult to assess due to the submillimeter dimensions and accessibility of the region. In the present computational study, we simulated three-dimensional alveolar flows in an alveolated duct at each generation of the pulmonary acinar tree using recent morphometric data. Rhythmic lung expansion and contraction motion was modeled using moving wall boundary conditions to simulate realistic sedentary tidal breathing. The resulting alveolar flow patterns are largely time independent and governed by the ratio of the alveolar to ductal flow rates, Qa/Qd. This ratio depends uniquely on geometrical configuration such that alveolar flow patterns may be entirely determined by the location of the alveoli along the acinar tree. Although flows within alveoli travel very slowly relative to those in acinar ducts, 0.021%相似文献   

6.
Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dynamics, the deposition of 1- and 3-μm aerosol particles was predicted in models of human alveolar sac and terminal acinar bifurcation under rhythmic wall motion for two breathing conditions (functional residual capacity = 3 liter, tidal volume = 0.5 and 0.9 liter, breathing period = 4 s). Particles entering the model during one inspiration period were tracked for multiple breathing cycles until all particles deposited or escaped from the model. Flow recirculation inside alveoli occurred only during transition between inspiration and expiration and accounted for no more than 1% of the whole cycle. Weak flow irreversibility and convective transport were observed in both models. The average deposition efficiency was similar for both breathing conditions and for both models. Under normal gravity, total deposition was ~33 and 75%, of which ~67 and 96% occurred during the first cycle, for 1- and 3-μm particles, respectively. Under zero gravity, total deposition was ~2-5% for both particle sizes. These results support previous findings that gravitational sedimentation is the dominant deposition mechanism for micrometer-sized aerosols in acinar airways. The results also showed that moving walls and multiple breathing cycles are needed for accurate estimation of aerosol deposition in acinar airways.  相似文献   

7.
Recombinant glycoprotein Ibα latex beads (rGPIbα-LB) are a potential solution to overcoming platelet transfusion problems with artificial platelets. To understand the transport process of artificial platelets and to estimate the particle motion when adhering to the wall surface, we evaluated the lateral motion of rGPIbα-LB in terms of drift and random motion, because the lateral motion is an important factor for transport and adhesion. We observed the lateral motion of rGPIbα-LB flowing with red blood cells toward the immobilized von Willebrand factor (vWf) surface in a model arteriole at wall shear rates of 200–1000 s?1 and 0–40% Hct. At 40% Hct, wall shear rate dependence was observed for the drift motion, i.e. the lateral velocity of rGPIbα-LB toward the wall. In the near-wall region, the drift motion of contacting particles differed substantially from that of non-contacting particles. Additionally, the trajectories of contacting particles on the vWf surface had specific motion that was not observed on the BSA surface. These results suggest that the adhesion force between rGPIbα and vWf is highly associated with the motion of particles near the wall. These features are desirable for artificial platelets, particularly for the adhesion process.  相似文献   

8.
We present a model of esophageal wall muscle mechanics during bolus transport with which the active and "passive" components of circular muscle tension are separately extracted from concurrent manometric and videofluoroscopic data. Local differential equations of motion are integrated across the esophageal wall to yield global equations of equilibrium which relate total tension within the esophageal wall to intraluminal pressure and wall geometry. To quantify the "passive" (i.e. inactive) length-tension relationships, the model equations are applied to a region of the esophagus in which active muscle contraction is physiologically inhibited. Combining the global equations with space-time-resolved intraluminal pressure measured manometrically and videofluoroscopic geometry data, the passive model is used to separate active and "passive" components of esophageal muscle tension during bolus transport. The model is of general applicability to probe basic muscle mechanics including the space-time stimulation of circular muscle, the relationship between longitudinal muscle tension and longitudinal muscle shortening, and the contribution of the collagen matrix surrounding muscle fibers to passive tension during normal human esophageal bolus transport and in pathology. Example calculations of normal esophageal function are given where active tone is found to extend only over a short intrabolus segment near the bolus tail and segmental regions of active muscle squeeze are demonstrated.  相似文献   

9.
We report on a computational investigation of the passive transport of H2 and O2 between the external solution and the hydrogen-producing active site of CpI [FeFe]-hydrogenase from Clostridium pasteurianum. Two distinct methodologies for studying gas access are discussed and applied: (1) temperature-controlled locally enhanced sampling, and (2) volumetric solvent accessibility maps, providing consistent results. Both methodologies confirm the existence and function of a previously hypothesized pathway and reveal a second major pathway that had not been detected by previous analyses of CpI's static crystal structure. Our results suggest that small hydrophobic molecules, such as H2 and O2, diffusing inside CpI, take advantage of well-defined preexisting packing defects that are not always apparent from the protein's static structure, but that can be predicted from the protein's dynamical motion. Finally, we describe two contrasting modes of intraprotein transport for H2 and O2, which in our model are differentiated only by their size.  相似文献   

10.
11.
Monocyte adhesion to the endothelium depends on concentrations of receptors/ligands, local concentrations of chemoattractants, monocyte transport to the endothelial surface and hemodynamic forces. Monocyte adhesion to the inert surface of a three-dimensional perfusion model was shown to correlate inversely with wall shear stress, but was also affected by flow patterns which influenced the near-wall cell availability. We hypothesized that (a) under the same flow conditions, insolubilized E-selectin on the model's surface may mediate adhesive interactions at higher wall shear stresses, compared to an uncoated model, and (b) pulsatile flow may modify the adhesion profile obtained under steady flow. An axisymmetric flow model with a stenosis and a sudden expansion produced a range of wall shear stresses and a separated flow with recirculation and reattachment. Pre-activated U937 cells were perfused through the model under either steady (Re = 100, 140) or pulsatile (Remean = 107) flow. The velocity field was characterized through computational fluid dynamics and validated by inert particle tracking. Surface E-selectin greatly increased cell adhesion in all regions at Re = 100 and 140, compared to an uncoated model under the same flow conditions. In regions where the cells near the wall were abundant (taper and stenosis), adhesion to E-selectin correlated with the reciprocal of local wall shear stress when flow was steady. Pulsatile flow distributed the adherent cells more evenly throughout the coated model. Hence, characterizing both the local hemodynamics and the biological activity on the vessel wall is important in leukocyte adhesion.  相似文献   

12.
Mixing associated with "stretch-and-fold" convective flow patterns has recently been demonstrated to play a potentially important role in aerosol transport and deposition deep in the lung (J. P. Butler and A. Tsuda. J. Appl. Physiol. 83: 800-809, 1997), but the origin of this potent mechanism is not well characterized. In this study we hypothesized that even a small degree of asynchrony in otherwise reversible alveolar wall motion is sufficient to cause flow irreversibility and stretch-and-fold convective mixing. We tested this hypothesis using a large-scale acinar model consisting of a T-shaped junction of three short, straight, square ducts. The model was filled with silicone oil, and alveolar wall motion was simulated by pistons in two of the ducts. The pistons were driven to generate a low-Reynolds-number cyclic flow with a small amount of asynchrony in boundary motion adjusted to match the degree of geometric (as distinguished from pressure-volume) hysteresis found in rabbit lungs (H. Miki, J. P. Butler, R. A. Rogers, and J. Lehr. J. Appl. Physiol. 75: 1630-1636, 1993). Tracer dye was introduced into the system, and its motion was monitored. The results showed that even a slight asynchrony in boundary motion leads to flow irreversibility with complicated swirling tracer patterns. Importantly, the kinematic irreversibility resulted in stretching of the tracer with narrowing of the separation between adjacent tracer lines, and when the cycle-by-cycle narrowing of lateral distance reached the slowly growing diffusion distance of the tracer, mixing abruptly took place. This coupling of evolving convective flow patterns with diffusion is the essence of the stretch-and-fold mechanism. We conclude that even a small degree of boundary asynchrony can give rise to stretch-and-fold convective mixing, thereby leading to transport and deposition of fine and ultrafine aerosol particles deep in the lung.  相似文献   

13.
Diffusive transport of macromolecules and nanoparticles in charged fibrous media is of interest in many biological applications, including drug delivery and separation processes. Experimental findings have shown that diffusion can be significantly hindered by electrostatic interactions between the diffusing particle and charged components of the extracellular matrix. The implications, however, have not been analyzed rigorously. Here, we present a mathematical framework to study the effect of charge on the diffusive transport of macromolecules and nanoparticles in the extracellular matrix of biological tissues. The model takes into account steric, hydrodynamic, and electrostatic interactions. We show that when the fiber size is comparable to the Debye length, electrostatic forces between the fibers and the particles result in slowed diffusion. However, as the fiber diameter increases the repulsive forces become less important. Our results explain the experimental observations that neutral particles diffuse faster than charged particles. Taken together, we conclude that optimal particles for delivery to tumors should be initially cationic to target the tumor vessels and then change to neutral charge after exiting the blood vessels.  相似文献   

14.
The breaking of left–right symmetry in the mammalian embryo is believed to occur in a transient embryonic structure, the node, when cilia create a leftward flow of liquid. The two-cilia hypothesis proposes that the node contains two kinds of primary cilia: motile cilia that rotate autonomously to generate the leftward fluid flow and passive cilia that act as mechano-sensors, responding to flow. While studies support this hypothesis, the mechanism by which the sensory cilia respond to the fluid flow is still unclear. In this paper, we present a computational model of two cilia, one active and one passive. By employing computational fluid dynamics, deformable mesh computational techniques and fluid–structure interaction analysis, and solving the three-dimensional unsteady transport equations, we study the flow pattern produced by the movement of the active cilium and the response of the passive cilium to this flow. Our results reveal that clockwise rotation of the active cilium can generate a counter-clockwise elliptical rotation and overall lateral displacement for its neighboring passive one, of measurable magnitude and consistent pattern. This supports the plausibility of the two-cilia hypothesis and helps quantify the motion pattern for the passive cilium induced by this regional flow.  相似文献   

15.
Rounding a corner of a bent termite tunnel and tunnel traffic efficiency   总被引:2,自引:1,他引:1  
Subterranean termites construct underground tunnels, tens to hundreds of feet, to reach feeding sites and to transport food items to their nest. To ensure a high rate food return to the nest, an optimized tunnel should be constructed. We found that termites (Coptotermes formosanus Shiraki) fill the corner of a bent tunnel with soil particles excavated from tunnel tip where their digging behavior is activated. The corner-filling behavior, eventually, made a sharp corner smooth-rounded. In the present study, we showed that the corner-filling behavior could play an important role in improving the tunnel traffic efficiency. To do this, we compared the termites' time spent for passing corners between with a right-angled flat tip (RA-corner), corresponding to the sharp corner, and with a rounded tip (R-corner) corresponding to the smooth-rounded corner. As a result, the passing time in the R-corner was significantly shorter than in the RA-corner. In addition, tunnel width effect was discussed in terms of individual movement.  相似文献   

16.
The complexity of inertial particle dynamics through swirling chaotic flow structures characteristic of pulsatile large-artery hemodynamics renders significant challenges in predictive understanding of transport of such particles. This is specifically crucial for arterial embolisms, where knowledge of embolus transport to major vascular beds helps in disease diagnosis and surgical planning. Using a computational framework built upon image-based CFD and discrete particle dynamics modeling, a multi-parameter sampling-based study was conducted on embolic particle dynamics and transport. The results highlighted the strong influence of material properties, embolus size, release instance, and embolus source on embolus distribution to the cerebral, renal and mesenteric, and ilio-femoral vasculature beds. The study also isolated the importance of shear-gradient lift, and elastohydrodynamic contact, in affecting embolic particle transport. Near-wall particle re-suspension due to lift alters aortogenic embolic particle dynamics significantly as compared to cardiogenic. The observations collectively indicated the complex interplay of particle inertia, fluid–particle density ratio, and wall collisions, with chaotic flow structures, which render the overall motion of the particles to be non-trivially dispersive in nature.  相似文献   

17.
Nuclear transport requires freely diffusing nuclear transport proteins to facilitate movement of cargo molecules through the nuclear pore. We analyzed dynamic properties of importin alpha, importin beta, Ran and NTF2 in nucleus, cytoplasm and at the nuclear pore of neuroblastoma cells using fluorescence correlation spectroscopy. Mobile components were quantified by global fitting of autocorrelation data from multiple cells. Immobile components were quantified by analysis of photobleaching kinetics. Wild-type Ran was compared to various mutant Ran proteins to identify components representing GTP or GDP forms of Ran. Untreated cells were compared to cells treated with nocodazole or latrunculin to identify components associated with cytoskeletal elements. The results indicate that freely diffusing importin alpha, importin beta, Ran and NTF2 are in dynamic equilibrium with larger pools associated with immobile binding partners such as microtubules in the cytoplasm. These findings suggest that formation of freely diffusing nuclear transport intermediates is in competition with binding to immobile partners. Variation in concentrations of freely diffusing nuclear transport intermediates among cells indicates that the nuclear transport system is sufficiently robust to function over a wide range of conditions.  相似文献   

18.
To evaluate the transport properties of the alveolar epithelium, we instilled hetastarch (Het; 6%, 10 ml, 1 - 1 x 10(4) kDa) into the trachea of isolated rat lungs and then measured the molecular distribution of Het that entered the lung perfusate from the air space over 6 h. Het transport was driven by either diffusion or an oncotic gradient. Perfusate Het had a unique, bimodal molecular weight distribution, consisting of a narrow low-molecular-weight peak at 10-15 kDa (range, 5-46 kDa) and a broad high-molecular-weight band (range 46-2,000 kDa; highest at 288 kDa). We modeled the low-molecular-weight transport as (passive) restricted diffusion or osmotic flow through a small-pore system and the high-molecular-weight transport as passive transport through a large-pore system. The equivalent small-pore radius was 5.0 nm, with a distribution of 150 pores per alveolus. The equivalent large-pore radius was 17.0 nm, with a distribution of one pore per seven alveoli. The small-pore fluid conductivity (2 x 10(-5) ml. h(-1). cm(-2). mmHg(-1)) was 10-fold larger than that of the large-pore conductivity.  相似文献   

19.
The spatial localisation of proteins is critical for most cellular function. In bacteria, this is typically achieved through capture by established landmark proteins. However, this requires that the protein is diffusive on the appropriate timescale. It is therefore unknown how the localisation of effectively immobile proteins is achieved. Here, we investigate the localisation to the division site of the slowly diffusing lipoprotein Pal, which anchors the outer membrane to the cell wall of Gram-negative bacteria. While the proton motive force-linked TolQRAB system is known to be required for this repositioning, the underlying mechanism is unresolved, especially given the very low mobility of Pal. We present a quantitative, mathematical model for Pal relocalisation in which dissociation of TolB-Pal complexes, powered by the proton motive force across the inner membrane, leads to the net transport of Pal along the outer membrane and its deposition at the division septum. We fit the model to experimental measurements of protein mobility and successfully test its predictions experimentally against mutant phenotypes. Our model not only explains a key aspect of cell division in Gram-negative bacteria, but also presents a physical mechanism for the transport of low-mobility proteins that may be applicable to multi-membrane organelles, such as mitochondria and chloroplasts.  相似文献   

20.
Abnormal haemodynamic parameters are associated with atheroma plaque progression and instability in coronary arteries. Flow recirculation, shear stress and pressure gradient are understood to be important pathogenic mediators in coronary disease. The effect of freedom of coronary artery movement on these parameters is still unknown. Fluid–structure interaction (FSI) simulations were carried out in 25 coronary artery models derived from authentic human coronaries in order to investigate the effect of degree of freedom of movement of the coronary arteries on flow recirculation, wall shear stress (WSS) and wall pressure gradient (WPG). Each FSI model had distinctive supports placed upon it. The quantitative and qualitative differences in flow recirculation, maximum wall shear stress (MWSS), areas of low wall shear stress (ALWSS) and maximum wall pressure gradient (MWPG) for each model were determined. The results showed that greater freedom of movement was associated with lower MWSS, smaller ALWSS, smaller flow recirculation zones and lower MWPG. With increasing percentage diameter stenosis (%DS), the effect of degree of freedom on flow recirculation and WSS diminished. Freedom of movement is an important variable to be considered for computational modelling of human coronary arteries, especially in the setting of mild to moderate stenosis.

Abbreviations: 3D: Three-dimensional; 3DR: Three-dimensional Reconstruction; 3D-QCA: Three-dimensional quantitative coronary angiography; ALWSS: Areas of low wall shear stress; CAD: Coronary artery disease; CFD: Computational fluid dynamics; %DS: Diameter stenosis percentage; EPCS: End point of counter-rotating streamlines; FSI: Fluid–structure interaction; IVUS: Intravascular ultrasound; LAD: Left anterior descending; MWSS: Maximum wall shear stress; SST: Shear stress transport; TAWSS: Time-averaged wall shear stress; WSS: wall shear stress; WPG: Wall pressure gradient; MWPG: Maximum wall pressure gradient; FFR: Fractional flow reserve; iFR: Instantaneous wave-free ratio  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号