首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since its beginning, at the turn of the 19th century, biology has been mostly--if not exclusively--analytical. Reductionism has progressively unveiled a series of structures buried into one another like Russian dolls. The study of the genome, the deepest structure of organisms, represents the triumph of reductionism. With the deciphering of the genome and the birth of what is called the 'proteome'--i.e. the study of the proteins and of their interactions--, a new stage appears. To the disorganisation that characterised two centuries of biology, a phase of reconstruction of living organisms is substituted. This is concerned first with interactions of proteins and of cells. In addition, one of the most remarkable tools for this latter research has been provided by embryonic stem cells.  相似文献   

2.
Stem cell lines would be very valuable for the repair of diseased or damaged organs. Stem cells derived from adult tissues raise few ethical problems, and would not be rejected if derived from the patient. They show considerable plasticity and might be appropriate for some clinical conditions, but they tend not to grow well in culture. Stem cells derived from the early human embryo proliferate indefinitely in culture and can give rise to many different tissues, but their derivation requires destruction of the embryo, which is not ethically acceptable in some countries. Other countries allow strictly regulated destructive research on human embryos, usually those that have been produced for infertile couples in infertility clinics. Embryos that are no longer required for the couple's own reproductive project could be donated for research rather than just discarded. Different approaches are being developed to avoid immunological rejection of embryonic stem cells used for therapy. Derivation of embryonic stem cell lines by somatic cell nuclear transfer ('cloning') from the patients themselves might be one possible approach, but is unlikely to be used in routine clinical practice if more cost-effective methods are available.  相似文献   

3.
The stem cell data presented and discussed during the symposium raise the hope that important medical progress can be made in several fields: neuro-degenerative diseases, those linked to cellular deficit, some aspects of aging linked to cellular degeneration, and the treatment of cancers that may harm normal tissues at risk of being infiltrated by malignant cells. Three main types of stem cells are available. (i) Those present in normal adult tissue: contrary to what was believed, some data suggest that certain adult stem cells have a great plasticity (they can differentiate into cells different from those in tissues from which they were taken) and can proliferate in vitro without losing their properties. Nevertheless, their use faces several obstacles: in ill or elderly subjects, then these cells can be limited in number or not multiply well in vitro. In this case, auto-grafting of the cells cannot be used. They must be sought in another subject, and allo-grafting causes difficult and sometimes insoluble problems of immunological tolerance. (ii) Embryonic stem cells from surplus human embryos, obtained by in vitro fertilisation, which the parents decide not to use: these cells have a great potential for proliferation and differentiation, but can also encounter problems of immunological intolerance. (iii) Cells obtained from cell nuclear transfer in oocytes: these cells are well tolerated, since they are genetically and immunologically identical to those of the host. All types of stem cells can be obtained with them. However, they do present problems. For obtaining them, female oocytes are needed, which could lead to their commercialization. Moreover, the first steps for obtaining these cells are identical to those used in reproductive cloning. It therefore appears that each type of cell raises difficult scientific and practical problems. More research is needed to overcome these obstacles and to determine which type of stem cell constitutes the best solution for each type of disease and each patient. There are three main ethical problems: (a) to avoid the commercialization of stem cells and oocytes (this can be managed through strict regulations and the supervision of authorized laboratories); (b) to avoid that human embryos be considered as a mere means to an end (they should only be used after obtaining the informed consent of the parents; the conditions of their use must be well defined and research programs must be authorized); (c) to avoid that research on stem cell therapy using cell nuclear replacement opens the way to reproductive cloning (not only should reproductive cloning be firmly forbidden but authorization for cell nuclear transfer should be limited to a small number of laboratories). Overall, it appears that solutions can be found for administrative and ethical problems. Harmonisation of international regulations would be desirable in this respect, in allowing at the same time each country to be responsible for its regulations. A last ethical rule should be implemented, not to give patients and their families false hopes. The scientific and medical problems are many, and the solutions will be long and difficult to find. Regenerative medicine opens important avenues for research, but medical progress will be slow.  相似文献   

4.
My professional lifetime has seen progress in the biomedical sciences that beggars belief. This has lead to astonishing advances in the ability to prevent and treat disease and, in the developed world at least, people live longer and healthier lives than ever before. Paradoxically, this has gone hand in hand with the growth of a vocal and influential anti-science lobby that not only rejects much modern science but is also deeply suspicious of new medical interventions. The prospect of cell therapy in the near or middle future is their current target especially where the use of embryonic stem cells or of cell nuclear transfer techniques is concerned. The prospect of cell therapy is welcomed with enthusiasm by patients with genetic and degenerative diseases who hope to benefit from them. On the other hand the whole idea is regarded as repugnant by the anti-science lobby. While some of this opposition is essentially luddite in nature, there are some more persuasive arguments raised particularly to any research than uses embryonic or foetal materials. These arguments will be examined critically. The moral problems of denying the sick the hope of effective treatments have to be weighed against those seen in the development of such treatments. (This article is closely based on an already published paper. P. Lachmann, Stem cell research: why is it regarded as a threat? An investigation of the economic and ethical arguments made against research with human embryonic stem cells. EMBO Rep. 2 (3) (2001) 165–168.)  相似文献   

5.
Recent advances in stem cell technology have generated enthusiasm for their potential to study and treat a diverse range of human disease. Pluripotent human stem cells for therapeutic use may, in principle, be obtained from two sources: embryonic stem cells (hESCs), which are capable of extensive self-renewal and expansion and have the potential to differentiate into any somatic tissue, and induced pluripotent stem cells (iPSCs), which are derived from differentiated tissue such as adult skin fibroblasts and appear to have the same properties and potential, but their generation is not dependent upon a source of embryos. The likelihood that clinical transplantation of hESC- or iPSC-derived tissues from an unrelated (allogeneic) donor that express foreign human leucocyte antigens (HLA) may undergo immunological rejection requires the formulation of strategies to attenuate the host immune response to transplanted tissue. In clinical practice, individualized iPSC tissue derived from the intended recipient offers the possibility of personalized stem cell therapy in which graft rejection would not occur, but the logistics of achieving this on a large scale are problematic owing to relatively inefficient reprogramming techniques and high costs. The creation of stem cell banks comprising HLA-typed hESCs and iPSCs is a strategy that is proposed to overcome the immunological barrier by providing HLA-matched (histocompatible) tissue for the target population. Estimates have shown that a stem cell bank containing around 10 highly selected cell lines with conserved homozygous HLA haplotypes would provide matched tissue for the majority of the UK population. These simulations have practical, financial, political and ethical implications for the establishment and design of stem cell banks incorporating cell lines with HLA types that are compatible with different ethnic populations throughout the world.  相似文献   

6.
《Cell Stem Cell》2022,29(9):1346-1365.e10
  1. Download : Download high-res image (218KB)
  2. Download : Download full-size image
  相似文献   

7.
A strategy based upon the introduction of an adenovirus-SV40 plasmid into multipotential cells was designed to immortalize clones displaying properties of lineage stem cells. The murine 1C11 cell line behaves as a neuroepithelial progenitor. Upon appropriate induction, almost 100% of 1C11 precursor cells develop neurite extensions and convert into either serotonergic or noradrenergic neurons. The two mutually exclusive neuronal programs are autoregulated by serotonergic or adrenergic receptors. PrPc is constitutively expressed by 1C11 cells. Antibody-mediated cross-linking of PrPc promotes the dephosphorylation of the tyrosine kinase Fyn associated to a Fyn kinase activation. The coupling of PrPc to Fyn is dependent on caveolin-1. It is restricted to the fully differentiated serotonergic or noradrenergic cells and occurs mainly at neurites. Thus, PrPc may represent a signal transduction protein which may fine-tune neuronal functions. Since the 1C11 stem cell supports prion replication, it may provide a tool to investigate whether PrPSc accumulation interferes with PrPc signalling activity.  相似文献   

8.
The development of human pluripotent stem cell (PSC)‐derived medicinal products has been gathering steam in recent years, but the translation of research protocols into GMP production remains a daunting task. The challenges not only reside with the nature of cellular therapeutics but are also rooted in the general inexperience in industry‐scale production of stem cell products. Manufacturers of PSC‐derived products should be aware of the technical nuances and take a holistic approach toward early planning and engagement with their academic partners. While not all issues will be readily resolved soon, the collective knowledge and consensus by the manufacturers and key stakeholders will help to guide rapid progression of the field.  相似文献   

9.
丘祥兴  沈铭贤  胡庆澧 《生命科学》2012,(11):1308-1317
干细胞具有"分化"和"脱分化"的特点和潜能,干细胞研究有着良好的医学前景,许多人类严重疾病的治疗有了新的希望。伴随着干细胞研究的开展和深入,出现了诸多伦理问题的争论。拟就干细胞研究的希望和现实、伦理争论的主要观点及干细胞研究伦理准则的构建,作一简要介绍,并就加强干细胞管理提出建议。  相似文献   

10.
肿瘤组织中存在一小群能够自我更新、增殖和分化,对肿瘤的发生、发展、复发、转移起决定作用的细胞,即肿瘤干细胞(cancer stem cells,CSCs)。在传统理论方法已不能攻克癌症的情况下,肿瘤干细胞理论为我们重新认识肿瘤的起源和本质提供了新的方向和视角。从20世纪50年代至今,随着生物技术的发展,肿瘤干细胞理论经历了从设想到验证的漫长历程。但该理论自提出之日起便受到来自各方面不同观点的质疑。当今针对肿瘤干细胞癌症治疗主要集中在靶向问题上。因此,寻找特异的肿瘤干细胞标志物,探索肿瘤干细胞与周围微环境间的复杂关系以及发现调控其功能的关键信号通路成为当前研究的热点。  相似文献   

11.
Both human periodontal ligament stem cells (hPDLSCs) and human gingival mesenchymal stem cells (hGMSCs) are candidate seed cells for bone tissue engineering, but the osteo-differentiation ability of the latter is weaker than the former, and the mechanisms are unknown. To explore the potential regulation of mRNAs and long non-coding RNAs (lncRNAs), this study obtained the gene expression profiles of hPDLSCs and hGMSCs in both undifferentiated and osteo-differentiated conditions by microarray assay and then analysed the common and specific differentially expressed mRNAs and lncRNAs in hPDLSCs and hGMSCs through bioinformatics method. The results showed that 275 mRNAs and 126 lncRNAs displayed similar changing patterns in hPDLSCs and hGMSCs after osteogenic induction, which may regulate the osteo-differentiation in both types of cells. In addition, the expression of 223 mRNAs and 238 lncRNAs altered only in hPDLSCs after osteogenic induction, and 177 mRNAs and 170 lncRNAs changed only in hGMSCs. These cell-specific differentially expressed mRNAs and lncRNAs could underlie the different osteo-differentiation potentials of hPDLSCs and hGMSCs. Finally, dickkopf Wnt signalling pathway inhibitor 1 (DKK1) was proved to be one regulator for the weaker osteo-differentiation ability of hGMSCs through validation experiments. We hope these results help to reveal new mRNAs-lncRNAs-based molecular mechanism for osteo-differentiation of hPDLSCs and hGMSCs and provide clues on strategies for improving stem cell–mediated bone regeneration.  相似文献   

12.
Neural stem cells(NSCs) are one specific type of multipotential stem cells that have the ability to proliferate for a long time and to differentiate into neural cells,including neurons,astrocytes and oligodendrocytes.These NSCs exist in both the embryonic and adult central nervous system(CNS) of all mammalian species.Progress has been made in the understanding of the developmental regulation of NSCs and their function in neurogenesis.This review discusses recent progress in this area,with emphasis on work d...  相似文献   

13.
Tissue function during development and in regenerative medicine completely relies on correct cell organization and patterning at micro and macro scales. We describe a rapid method for patterning mammalian cells including human embryonic stem cells (HESCs) and induced pluripotent stem cells (iPSCs) on elastomeric membranes such that micron‐scale control of cell position can be achieved over centimeter‐length scales. Our method employs surface engineering of hydrophobic polydimethylsiloxane (PDMS) membranes by plasma polymerization of allylamine. Deposition of plasma polymerized allylamine (ppAAm) using our methods may be spatially restricted using a micro‐stencil leaving faithful hydrophilic ppAAm patterns. We employed airbrushing to create aerosols which deposit extracellular matrix (ECM) proteins (such as fibronectin and Matrigel?) onto the same patterned ppAAm rich regions. Cell patterns were created with a variety of well characterized cell lines (e.g., NIH‐3T3, C2C12, HL1, BJ6, HESC line HUES7, and HiPSC line IPS2). Individual and multiple cell line patterning were also achieved. Patterning remains faithful for several days and cells are viable and proliferate. To demonstrate the utility of our technique we have patterned cells in a variety of configurations. The ability to rapidly pattern cells at high resolution over macro scales should aid future tissue engineering efforts for regenerative medicine applications and in creating in vitro stem cell niches. Biotechnol. Bioeng. 2012; 109: 2630–2641. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
15.
16.
Recent discoveries demonstrating surprising cell plasticity in animals and humans call into question many long held assumptions regarding differentiative potential of adult cells. These assumptions reflect a classical paradigm of cell lineage development projected onto both prenatal development and post-natal maintenance and repair of tissues. The classical paradigm describes unidirectional, hierarchical lineages proceedings step-wise from totipotent or pluripotent stem cells through intermediate, ever more restricted progenitor cells, leading finally to 'terminally differentiated' cells. However, in light of both the recent discoveries and older clinical or experimental findings, we have suggested principles comprising a new paradigm of cell plasticity, summarized here.  相似文献   

17.
Haematopoietic stem cells (HSCs) can supply all blood cells throughout the adult life of individuals. Based on this property, HSCs have been used for bone marrow and cord blood transplantation. Among various stem cells, HSCs were recognized earliest and were studied most extensively, providing a model for other stem cells. Knowledge of HSC regulation has rapidly accumulated of late. Contributions of scientists in Japan to progress HSC biology are here briefly overviewed. Focusing on the original work accomplished in Japan in the last two decades, people who have led such activities are introduced and their relationships with one another are sketched.  相似文献   

18.
Suemori H 《Human cell》2006,19(2):65-70
Embryonic stem (ES) cell lines, which are derived from the inner cell mass of blastocysts, proliferate indefinitely in vitro, retaining their potency to differentiate into various cell types derived from all of the three embryonic germ layers: the ectoderm, mesoderm and endoderm. Establishment of human ES cell lines in 1998 has indicated the great potential of ES cells for applications in medical research and other purposes such as cell transplantation therapy. Careful assessment of safety and effectiveness using proper animal models is required before such therapies can be attempted on human patients. Monkey ES cell lines provide valuable models for such research.  相似文献   

19.
人胚胎干细胞向生殖细胞分化的研究进展   总被引:4,自引:0,他引:4  
小鼠胚胎干细胞体外已成功诱导分化为配子细胞,人胚胎干细胞理论上也具备分化为生殖细胞的潜能。本文从影响人胚胎干细胞体外向生殖系分化的基因调控和干细胞小生境(niche)方面进行综述,并指出胚胎干细胞在生殖医学及不孕治疗中的研究方向和应用前景。  相似文献   

20.
A non-eukaryotic, metakaryotic cell with large, open mouthed, bell shaped nuclei represents an important stem cell lineage in fetal/juvenile organogenesis in humans and rodents. each human bell shaped nucleus contains the diploid human DNA genome as tested by quantitative Feulgen DNA cytometry and fluorescent in situ hybridization with human pan-telomeric, pan-centromeric and chromosome specific probes. From weeks ∼5–12 of human gestation the bell shaped nuclei are found in organ anlagen enclosed in sarcomeric tubular syncytia. Within syncytia bell shaped nuclear number increases binomially up to 16 or 32 nuclei; clusters of syncytia are regularly dispersed in organ anlagen. Syncytial bell shaped nuclei demonstrate two forms of symmetrical amitoses, facing or “kissing” bells and “stacking” bells resembling separation of two paper cups. Remarkably, DNA increase and nuclear fission occur coordinately. Importantly, syncytial bell shaped nuclei undergo asymmetrical amitoses creating organ specific ensembles of up to eight distinct closed nuclear forms, a characteristic required of a stem cell lineage. Closed nuclei emerging from bell shaped nuclei are eukaryotic as demonstrated by their subsequent increases by extra-syncytial mitoses populating the parenchyma of growing anlagen. From 9–14 weeks syncytia fragment forming single cells with bell shaped nuclei that continue to display both symmetrical and asymmetrical amitoses. These forms persist in the juvenile period and are specifically observed in bases of colonic crypts. Metakaryotic forms are found in organogenesis of humans, rats, mice and the plant Arabidopsis indicating an evolutionary origin prior to the divergence of plants and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号