首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous measurements were made with the xylem pressure probe on exposed, transpiring leaves and with the Scholander pressure chamber on both transpiring and covered, non-transpiring leaves of sugarcane and maize plants. Xylem tensions inferred from pressure chamber balancing pressures on non-transpiring leaves were similar to those measured directly with the xylem pressure probe in transpiring leaves. However, tensions inferred with the pressure chamber on transpiring leaves that were placed in plastics bags just prior to excision were up to 0.6 MPa greater than those measured concurrently with the xylem pressure probe. These findings suggest that relatively large differences in water potential between the xylem and bulk leaf tissue can exist during periods of rapid transpiration, and they confirm that the balance pressure of an excised, previously transpiring leaf is only a measure of the bulk average equilibrium leaf water potential and not of the true xylem pressure that existed prior to excision.Key words: Cohesion-Tension theory, xylem pressure probe, pressure chamber, xylem tension.   相似文献   

2.
Measurements with a pressure chamber were made of the xylem water potential of leaves, shoots and roots from bean plants (Pkaseolus vulgaris L. cv. Processor) grown with a 12 hour dark period and natural or artificial light conditions during the day. The water potentials were measured at the end of a dark period and during the light period. Measurements taken at the end of the dark period indicated normal potential gradients within the soil/plant system (leaf < shoot < root < soil), when the matric potential of soil water was relatively high (above ?0.02 bar), and the gradients then also remained normal during the day (natural light). When the soil water potential was ?1 bar or lower in the morning, however, the root xylem water potential was higher than the soil water potential; at very low soil water potentials (< ?4 bar) it remained higher during most of the day. In this case also leaf and shoot xylem water potentials were higher than the soil water potential in the early morning, although decreasing rapidly in daylight. Under artificial light, both leaf and root water potentials were higher than the soil water potential throughout the whole diurnal cycle when the latter potential was below ?4 bar. From measurements of stomatal diffusion resistance, transpiration, relative water content of leaves and of changes in the matric potential of soil water, it was concluded that when the matric potential of soil water was low, water could be taken up by the plant against a water potential gradient. Because leaf xylem water potential was always lower than root xylem water potential, the mechanism involved in the inversion of water potential gradient must be localized in the roots, and probably related to ion uptake. Symbols and abbreviations used in the text: Ψ: Plant water potential (thermocouple psychrometer); Ψx: Xylem water potential (pressure chamber); Ψs: Osmotic potential of xylem sap; Ψm: Matric potential of soil water; RWC: Relative water content.  相似文献   

3.
Leaf water potentials measured with a pressure chamber   总被引:31,自引:17,他引:14       下载免费PDF全文
Boyer JS 《Plant physiology》1967,42(1):133-137
Leaf water potentials were estimated from the sum of the balancing pressure measured with a pressure chamber and the osmotic potential of the xylem sap in leafy shoots or leaves. When leaf water potentials in yew, rhododendron, and sunflower were compared with those measured with a thermocouple psychrometer known to indicate accurate values of leaf water potential, determinations were within ± 2 bars of the psychrometer measurements with sunflower and yew. In rhododendron. water potentials measured with the pressure chamber plus xylem sap were 2.5 bars less negative to 4 bars more negative than psychrometer measurements.

The discrepancies in the rhododendron measurements could be attributed, at least in part, to the filling of tissues other than xylem with xylem sap during measurements with the pressure chamber. It was concluded that, although stem characteristics may affect the measurements, pressure chamber determinations were sufficiently close to psychrometer measurements that the pressure chamber may be used for relative measurements of leaf water potentials, especially in sunflower and yew. For accurate determinations of leaf water potential, however, pressure chamber measurements must be calibrated with a thermocouple psychrometer.

  相似文献   

4.
Some predictions of the recently proposed theory of long-distance water transport in plants (the Compensating Pressure Theory) have been verified experimentally in sunflower leaves. The xylem sap cavitates early in the day under quite small water stress, and the compensating pressure P (applied as the tissue pressure of turgid cells) pushes water into embolized vessels, refilling them during active transpiration. The water potential, as measured by the pressure chamber or psychrometer, is not a measure of the pressure in the xylem, but (as predicted by the theory) a measure of the compensating pressure P. As transpiration increases, P is increased to provide more rapid embolism repair. In many leaf petioles this increase in P is achieved by the hydrolysis of starch in the starch sheath to soluble sugars. At night P falls as starch is reformed. A hypothesis is proposed to explain these observations by pressure-driven reverse osmosis of water from the ground parenchyma of the petiole. Similar processes occur in roots and are manifested as root pressure. The theory requires a pump to transfer water from the soil into the root xylem. A mechanism is proposed by which this pump may function, in which the endodermis acts as a one-way valve and a pressure-confining barrier. Rays and xylem parenchyma of wood act like the xylem parenchyma of petioles and roots to repair embolisms in trees. The postulated root pump permits a re-appraisal of the work done by evaporation during transpiration, leading to the proposal that in tall trees there is no hydrostatic gradient to be overcome in lifting water. Some published observations are re-interpreted in terms of the theory: doubt is cast on the validity of measurements of hydraulic conductance of wood; vulnerability curves are found not to measure the cavitation threshold of water in the xylem, but the osmotic pressure of the xylem parenchyma; if measures of xylem pressure and of hydraulic conductance are both suspect, the accepted view of the hydraulic architecture of trees needs drastic revision; observations that xylem feeding insects feed faster as the water potential becomes more negative are in accord with the theory; tyloses, which have been shown to form in vessels especially vulnerable to cavitation, are seen as necessary for the maintenance of P, and to conserve the supplementary refilling water. Far from being a metastable system on the edge of disaster, the water transport system of the xylem is ultrastable: robust and self-sustaining in response to many kinds of stress.  相似文献   

5.
A New Theory for the Ascent of Sap--Cohesion Supported by Tissue Pressure   总被引:9,自引:0,他引:9  
Canny  Martin J. 《Annals of botany》1995,75(4):343-357
Recent work contradicting both the assumptions of the CohesionTheory, and the tensions measured in the xylem sap by the pressure-chamber,is reviewed. Measurements with the xylem-pressure probe revealpressures in vessels around 0 bar absolute, and no detectablegradients of pressure with tree height. Under high water stress,pressures down to -6 bar were found, but then cavitations occurredvery readily. Also, measurements of the cavitation thresholdsof water show an average threshold of about -2 bar. The uncertainfoundations of the Cohesion Theory are recalled from the yearsbefore 1965. Soon after that date, Scholander's measurementswith the pressure chamber were agreed to have confirmed thetheory and the existence of high tensions in the xylem. Before1965, many experiments over many years pointed to the conclusionsnow rediscovered, viz., no high tensions, and no gradients oftension. A resolution of these paradoxes is offered in the formof a new theory. This proposes that the driving force and thetransmission of the force are the same as in the Cohesion Theory,but the operating pressure of the xylem is raised into a stablerange by compensating tissue pressures pressing upon the trachearyelements. The tissue pressure does not propel the transpirationstream, which is still driven by evaporation, but protects thestream from cavitation. Evidence is presented for the existenceof positive pressures in roots, wood, and leaves. It is shownthat the anatomy of roots, wood, and monocotyledon and cryptogamvascular bundles is organized so that pressure is confined bymechanical barriers, and exerted upon the tracheary elementsby the living cells of the phloem and the xylem parenchyma.The Compensating-Pressure Theory also explains, among otherthings, root pressure, the function of the endodermis, the structureof wood, the constant association of xylem and phloem, the absenceof gas spaces in vascular tissue, the absence of a gravitationalgradient in the xylem, bleeding from cut palm inflorescences,how insects are able to withdraw sap from the xylem, and thevariable that is measured by the pressure chamber. This instrumentmeasures the water potential, but this is the potential notof xylem in tension, but of the compensating pressure appliedto the xylem. The requirements of the Theory are explained,and a number of predictions are made which are open to experimentaltesting.Copyright 1995, 1999 Academic Press Ascent of sap, cavitation, cohesion theory, endodermis, pressure chamber, root pressure, stem pressure, tissue pressure, transpiration, water potential, wood anatomy, xylem pressure  相似文献   

6.

Background and aims

Soil drying leads to the generation of chemical signals in plants that regulate water use via control of the stomatal aperture. The aim of our work was to identify the presence and identity of potential chemical signals, their dynamics, and their relationship with transpiration rate during soil drying in hop (Humulus lupulus (L.)) plants.

Methods

We used pressure chamber technique for measurement of shoot water potential and collection of shoot xylem sap. We analyzed concentrations of abscisic acid (ABA), nitrate, phosphate, sulphate and malate in sap and also the rate of whole plant transpiration.

Results

Transpiration rate decreased prior to changes in shoot water potential. The concentration of ABA in xylem sap continuously increased from early to later stages of water stress, whereas in leaves it increased only at later stages. Shoot sap pH increased simultaneously with the decrease of transpiration rate. Xylem sap alkalization was in some cases accompanied by a decrease in nitrate concentration and an increase in malate concentration. Concentration of sulphate increased in xylem sap during drying and sulphate in combination with a higher ABA concentration enhanced stomatal closure.

Conclusions

Several early chemical signals appear in sap of hop plants during soil drying and their impact on transpiration may vary according to the stage of soil drying.  相似文献   

7.
The influence of air vapor pressure deficit (VPD) and plant fruit load on the expansion and water relations of young tomato fruits grown in a glasshouse were evaluated under summer Mediterranean conditions. The contributions of phloem, xylem and transpiration fluxes to the fruit volume increase were estimated at an hourly scale from the growth curves of intact, heat-girdled and detached fruits, measured using displacement transducers. High VPD conditions reduced the xylem influx and increased the fruit transpiration, but hardly affected the phloem influx. Net water accumulation and growth rate were reduced, and a xylem efflux even occurred during the warmest and driest hours of the day. Changes in xylem flux could be explained by variations in the gradient of water potential between stem and fruit, due to changes in stem water potential. Misting reduced air VPD and alleviated the reduction in fruit volume increase through an increase in xylem influx and a decrease in fruit transpiration. Under low fruit load, the competition for assimilates being likely reduced, the phloem flux to fruits increased, similarly to the xylem and transpiration fluxes, without any changes in the fruit water potential. However, different diurnal dynamics among treatments assume variable contributions of turgor and osmotic pressure in F3 and F6 fruits, and hypothetical short-term variations in the water potential gradient between stem and fruit, preventing xylem efflux in F3 fruits.  相似文献   

8.
Field evaluation of water transport in grape berries during water deficits   总被引:4,自引:0,他引:4  
The net flow in vascular and transpirational components of the grape berry water budget was evaluated during water deficits imposed at different stages of fruit development. Diurnal fluctuations in berry diameter were measured on field-grown grapevines ( Vitis vinifera L. cv. Cabernet Sauvignon) by using electronic displacement transducers. Water deficits were imposed by withholding irrigation, and water potentials of mid-shoot leaves, basal stem xylem and clusters were determined with a pressure chamber. The relative net flows through pedicel xylem and phloem and through berry transpiration were estimated pre-veraison and post-veraison. The xylem functioned nearly exclusively in providing net inflow pre-veraison, while the phloem was clearly dominant post-veraison. Accordingly, the amplitude of diurnal contraction was markedly smaller post-veraison than pre-veraison. The amplitude of diurnal contraction increased dramatically with decreasing plant water status pre-veraison, yet exhibited little sensitivity to low vine water status post-veraison. Measurements of the difference in water potential between clusters and source stems did not provide evidence of a gradient that would elicit significant water movement from the cluster to the stem at any time of the day. This was true for both irrigated and non-irrigated vines, although the non-irrigated vines exhibited a smaller gradient favoring inflow throughout much of the day. The gradient for xylem water transport to the cluster was considerably smaller post-veraison than pre-veraison. The results showed that berry transpiration functioned as the primary pathway for water loss both pre- and post-veraison.  相似文献   

9.
Water potential, osmotic potential and turgor measurements obtained by using a cell pressure probe together with a nanoliter osmometer were compared with measurements obtained with an isopiestic psychrometer. Both types of measurements were conducted in the mature region of Tradescantia virginiana L. leaves under non-transpiring conditions in the dark, and gave similar values of all potentials. This finding indicates that the pressure probe and the osmometer provide accurate measurements of turgor, osmotic potentials and water potentials. Because the pressure probe does not require long equilibration times and can measure turgor of single cells in intact plants, the pressure probe together with the osmometer was used to determine in-situ cell water potentials, osmotic potentials and turgor of epidermal and mesophyll cells of transpiring leaves as functions of stomatal aperture and xylem water potential. When the xylem water potential was-0.1 MPa, the stomatal aperture was at its maximum, but turgor of both epidermal and mesophyll cells was relatively low. As the xylem water potential decreased, the stomatal aperture became gradually smaller, whereas turgor of both epidermal and mesophyll cells first increased and afterward decreased. Water potentials of the mesophyll cells were always lower than those of the epidermal cells. These findings indicate that evaporation of water is mainly occurring from mesophyll cells and that peristomatal transpiration could be less important than it has been proposed previously, although peristomatal transpiration may be directly related to regulation of turgor in the guard cells.  相似文献   

10.
The cohesion theory explains water transport in trees by the evaporation of water in the leaves (transpiration), which in turn generates the tension required for sap ascent, i.e. the flow of pure water from the soil through the root system and the non-living cells of the tree (xylem tracheids) up to the leaves. Only a small part of this water flow entering the leaves is used in photosynthesis to produce sugar solution, which is transported from the leaves through the living cells (phloem) to everywhere in the tree where it is needed and used. The phloem sieves are connected to the xylem tracheids by water transparent membranes, which means that the upflow of pure water and downflow of sugar solution interact with each other, causing the osmotic pressure in the sugar solution (Münch model). In this paper we analyse this interaction with a thermodynamic approach and we show that some open questions in the cohesion theory can then perhaps be better understood. For example, why under a quite high tension the water can flow in the xylem mostly without any notable cavitation, and how the suction force itself depends on the cavitation. Minimizing Gibbs energy of the system of xylem and phloem, we derive extended vapor pressure and osmotic pressure equations, which include gas bubbles in the xylem conduits as well as the cellulose-air-water interface term. With the aid of the vapor pressure equation derived here, we estimate the suction force that the cavitation controlled by the phloem sugar solution can generate at high moisture contents. We also estimate the suction force that the transpiration can generate by moisture gradient at low moisture contents. From the general osmotic pressure equation we derive an equation for calculating the degree of cavitation with different sugar solution concentrations and we show the conditions under which the cavitation in the xylem is totally avoided. Using recent field measurement results for a Scotch pine, the theory is demonstrated by showing its predictions for possible amounts of cavitation or embolism from morning hours to late afternoon.  相似文献   

11.
Since its introduction in the late 19th century, the so-called cohesion theory has become widely accepted as explaining the mechanism of the ascent of sap. According to the cohesion theory, the minimum standing vertical xylem tension gradient should be 0·01 MPa m−1. When transpiration is occurring, frictional resistances are expected to make this gradient considerably steeper. The results of numerous pressure chamber measurements reported in the literature are generally regarded as corroborating the cohesion theory. Nevertheless, several reports of pressure chamber measurements in tall trees appear to be incompatible with predictions of the cohesion theory. Furthermore, the pressure chamber is an indirect method for inferring xylem pressure, which, until recently, has not been validated by comparison against a direct method. The xylem pressure probe provides a means of testing the validity of the pressure chamber and other indirect techniques for estimating xylem pressure. We discuss here the results of concurrent measurements made with the pressure chamber and the xylem pressure probe, particularly recent measurements made at the top of a tall tropical tree during the rainy season. These measurements indicate that the pressure chamber often substantially overestimates the tension previously existing in the xylem, especially in the partially dehydrated tissue of droughted plants. We also discuss other evidence obtained from classical and recent approaches for studying water transport. We conclude that the available evidence derived from a wide range of independent approaches warrants a critical reappraisal of tension-driven water transport as the exclusive mechanism of long-distance water transport in plants.  相似文献   

12.
Direct determinations and indirect calculations of phloem turgor pressure were compared in white ash (Fraxinus americana L.). Direct measurements of trunk phloem turgor were made using a modified Hammel-type phloem needle connected to a pressure transducer. Turgor at the site of the direct measurements was calculated from the osmotic potential of the phloem sap and from the water potential of the xylem. It was assumed that the water potentials of the phloem and xylem were close to equilibrium at any one trunk location, at least under certain conditions. The water potential of the xylem was determined from the osmotic potential of xylem sap and from the xylem tension of previously bagged leaves, measured with a pressure chamber. The xylem tension of bagged leaves on a branch adjacent to the site of the direct measurements was considered equivalent to the xylem tension of the trunk at that point. While both the direct and indirect measurements of phloem turgor showed clear diurnal changes, the directly measured pressures were consistently lower than the calculated values. It is not clear at present whether the discrepancy between the two values lies primarily in the calculated or in the measured pressures, and thus, the results from both methods as described here must be regarded as estimates of true phloem turgor.  相似文献   

13.
A field study was conducted to determine how atmospheric and edaphic conditions influenced the water relations of avocado trees (Persea americana Mill. cv. Bacon). With high and low levels of incident photosynthetically active radiation (PAR, 400–700 nm wave length), and either wet or dry soil, leaf conductance decreased as the absolute humidity difference from leaf to air increased. For any water stress treatment, conductance was higher at high PAR than at low PAR. Both conductance and transpiration were higher in well-watered trees than in stressed trees, and in prestressed trees levels were intermediate to unstressed and stressed trees. A model for water flux through the soil-plant-atmosphere continuum was used to examine the relationship of leaf xylem pressure potential to transpiration in well-watered trees and in trees stressed by dry soil. There was a close linkage between leaf xylem pressure potential and transpiration in unstressed and previously stressed trees with high or low PAR, i.e. similar potentials occurred with equivalent transpiration regardless of previous treatment or time of day. In stressed trees, xylem pressure potential was lower than in unstressed trees both during the day and night, and at a given transpiration rate the potential was lower after 1400 h than before that time. The model indicated that in stressed trees xylem pressure potential was uncoupled from transpiration, presumably because of altered resistance in the soil-root portion of the transport system.  相似文献   

14.
Role of Pressure in Xylem Transport of Coconut and Other Palms   总被引:1,自引:0,他引:1  
The significance of root pressure in the transport of xylem sap has been investigated in Cocos nucifera L. and a few other palms. Despite the fact that excised palm roots can generate considerable pressures in situ, the quantity of water transported is only a small fraction of the demand resulting from transpiration. Most water transport is induced by negative pressure gradients, as in other higher plants. The development of considerable negative pressures has been demonstrated both directly and indirectly. Acoustic detection was used for the first time to monitor cavitation in water-stressed Cocos leaves. Its detection implies the ready disruption of xylem sap under these tensions. We suggest that root pressure might serve to refill cavitated xylem conduits when water is abundantly available and transpiration practically zero. However, little or no positive pressure could be demonstrated in intact palms subjected to low water stress: experimentally.  相似文献   

15.
Water potential gradient in a tall sequoiadendron   总被引:1,自引:0,他引:1       下载免费PDF全文
With an elevator installed in a 90-meter tall Sequoiadendron to collect the samples, xylem pressure potential measurements were made approximately every 15 meters along 60 meters of the tree's height. The measured gradient was about −0.8 bar per 10 meters of height, i.e., less than the hydrostatic gradient. Correction of the xylem pressure potential data by calibration against a thermocouple psychrometer confirmed this result. Similar gradients are described in the literature in tall conifers at times of low transpiration, although a different sampling technique was used. If the data in the present study and those supporting it are typical, they imply a re-evaluation of either the use of the pressure chamber to estimate water potential or the present theories describing water transport in tall trees.  相似文献   

16.
Embolisms decrease plant hydraulic conductance and therefore reduce the ability of the xylem to transport water to leaves provided that embolized conduits are not refilled. However, as a xylem conduit is filled with gas during cavitation, water is freed to the transpiration stream and this transiently increases xylem water potential. This capacitive effect of embolism formation on plant function has not been explicitly quantified in the past. A dynamic model is presented that models xylem water potential, xylem sap flow and cavitation, taking into account both the decreasing hydraulic conductance and the water release effect of xylem embolism. The significance of the capacitive effect increases in relation to the decreasing hydraulic conductance effect when transpiration rate is low in relation to the total amount of water in xylem conduits. This ratio is typically large in large trees and during drought.  相似文献   

17.
An interpretation of some whole plant water transport phenomena   总被引:7,自引:1,他引:6       下载免费PDF全文
A treatment of water flow into and through plants to the evaporating surface of the leaves is presented. The model is driven by evaporation from the cell wall matrix of the leaves. The adsorptive and pressure components of the cell wall matric potential are analyzed and the continuity between the pressure component and the liquid tension in the xylem established. Continuity of these potential components allows linking of a root transport function, driven by the tension in the xylem, to the leaf water potential. The root component of the overall model allows for the solvent-solute interactions characteristic of a membrane-bound system and discussion of the interactions of environmental variables such as root temperature and soil water potentials. A partition function is developed from data in the literature which describes how water absorbed by the plant might be divided between transpiration and leaf growth over a range of leaf water potentials.

Relationships between the overall system conductance and the conductance coefficients of the various plant parts (roots, xylem, leaf matrix) are established and the influence of each of these discussed.

The whole plant flow model coupled to the partition function is used to simulate several possible relationships between leaf water potential and transpiration rate. The effects of changing some of the partition function coefficients, as well as the root medium water potential on these simulations is illustrated.

In addition to the general usefulness of the model and its ability to describe a wide range of situations, we conclude that the relationships used, dealing with bulk fluid flow, diffusion, and solute transport, are adequate to describe the system and that analogically based theoretical systems, such as the Ohm's law analogy, probably ought to be abandoned for this purpose.

  相似文献   

18.
Decreased cytokinin (CK) export from roots in drying soil might provide a root-to-shoot signal impacting on shoot physiology. Although several studies show that soil drying decreases the CK concentration of xylem sap collected from the roots, it is not known whether this alters xylem CK concentration ([CK(xyl)]) in the leaves and bulk leaf CK concentration. Tomato (Solanum lycopersicum L.) plants were grown with roots split between two soil columns. During experiments, water was applied to both columns (well-watered; WW) or one (partial rootzone drying; PRD) column. Irrigation of WW plants aimed to replace transpirational losses every day, while PRD plants received half this amount. Xylem sap was collected by pressurizing detached leaves using a Scholander pressure chamber, and zeatin-type CKs were immunoassayed using specific antibodies raised against zeatin riboside after separating their different forms (free zeatin, its riboside, and nucleotide) by thin-layer chromatography. PRD decreased the whole plant transpiration rate by 22% and leaf water potential by 0.08 MPa, and increased xylem abscisic acid (ABA) concentration 2.5-fold. Although PRD caused no detectable change in [CK(xyl)], it decreased the CK concentration of fully expanded leaves by 46%. That [CK(xyl)] was maintained and not increased while transpiration decreased suggests that loading of CK into the xylem was also decreased as the soil dried. That leaf CK concentration did not decline proportionally with CK delivery suggests that other mechanisms such as CK metabolism influence leaf CK status of PRD plants. The causes and consequences of decreased shoot CK status are discussed.  相似文献   

19.
该文探讨了干燥脱水后的复苏植物密罗木(Myrothamnus flabellifolia)的复水速度和复水后不同时间下的木质部压力与植物对光-暗反应的关系。研究结果表明, 密罗木整株植物和离体枝条复水时水分在茎内的上升速度都很快, 10小时左右水分即可接近枝条的顶端。在植物复水初期, 木质部压力反应随着复水时间的延长不断增加, 3周后达到正常值。这种木质部压力的调节能力可能与气孔功能的恢复程度有关。同时, 密罗木在整个复水恢复过程中受到光照时木质部压力下降的弛豫时间都明显大于植物在光源关闭时木质部压力上升的弛豫时间。表明密罗木对蒸腾速率上升过程的调节速度明显低于对蒸腾速率下降过程的调节速度。  相似文献   

20.
Abstract Diurnal and seasonal water relations were measured in understorey species from a Banksia woodland. The shrubs exhibited various responses to summer drought. Stirlingia latifolia had high xylem pressure potential and transpiration in late summer. Adenanthos cygnorum maintained high xylem pressure potential year round with dawn values around ? 0.3 MPa and minimum values around ?1.3 MPa, but showed severe restriction of transpiration in late summer. Eremaea pauciflora and Jacksonia floribunda had high transpiration and xylem pressure potential levels in early summer, but exhibited water stress in late summer when transpiration rates were low and minimum xylem pressure potentials were as low as ? 5.5 MPa. Late summer xylem pressure potentials in 27 other shrub species were, in general, inversely related to root system depth with minimum values below ? 5.0 MPa in some species. The water relations of S. latifolia, E. pauciflora and J. floribunda indicated a phreatophytic habit: all possessed deep roots of sufficient size to reach groundwater that was located 6–7 m deep at the study site. Stirlingia latifolia functioned phreatophytically year round, while E. pauciflora and J. floribunda were phreatophytes until the falling water table carried ground-water beyond the reach of their roots in late summer. However, most understorey species depended on soil-stored water. Water use by the understorey was greatest in early summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号