首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study we investigated the binding characteristics of estrogen and antiestrogen-receptor complexes to rabbit uterine chromatin. Activated or nonactivated estrogen receptors were partially purified by DEAE-cellulose chromatography using low (1 mM) or high (10 mM) concentrations of sodium molybdate. Activated [3H]estradiol-receptor complexes showed enhanced binding to chromatin acceptor sites unmasked by 1 M, 4 M and 6 M guanidine hydrochloride. We also examined the chromatin-binding characteristics of the estrogen receptors when bound by the high-affinity triphenylethylene antiestrogen, H1285. The acceptor site activity for the [3H]H1285-receptor complexes was markedly decreased at sites unmasked by 4 M and 6 M guanidine hydrochloride. Further, the nonactivated receptor complexes showed very low binding to deproteinized chromatin. The estrogen-receptor chromatin-acceptor sites were tissue specific and saturable. These chromatin acceptor sites differ in their affinity and capacity (number of binding sites per cell) for the estrogen- and antiestrogen-receptor complexes. Thus, we suggest that the differences in the physiological and physicochemical properties of estrogens and antiestrogens may be related to their differential interaction with uterine chromatin subfractions.  相似文献   

2.
The binding characteristics of partially purified glucocorticoid receptor complexes from hormone sensitive, non-differentiating BCL1 cells to sequentially deproteinized BCL1 chromatin-cellulose was investigated. [3H]Triamcinolone acetonide (TA)-receptor complexes were purified (approx. 30-fold) from DEAE-cellulose columns by salt elution which allowed receptor activation only in the absence of molybdate. Addition of 10 mM molybdate completely blocked salt activation. The binding pattern of the activated [3H]TA-receptor complexes to chromatin-cellulose extracted with 0-8 M guanidine hydrochloride revealed three regions of increased binding activity (acceptor sites), at 2, 5 and 7 M guanidine hydrochloride. Acceptor site binding was markedly reduced for chromatin extracted with 3, 6 and 8 M guanidine hydrochloride. Non-activated receptor complexes demonstrated very low binding to deproteinized chromatin. It was also shown that chromatin binding required glucocorticoid receptors and that free ligand or ligand bound to other proteins did not bind significantly to chromatin. In addition, binding of [3H]TA-receptor complexes to partially deproteinized chromatin was competable by unlabeled TA-receptor complexes. Scatchard analysis demonstrated that chromatin from non-differentiating BCL1 cells possesses multiple, high-affinity binding sites which differ in their affinity for the glucocorticoid receptor. Partially deproteinized chromatin from lipopolysaccharide-stimulated BCL1 cells demonstrated a different pattern of receptor binding, i.e., receptor binding was significantly greater to chromatin previously extracted with 6-8 M guanidine hydrochloride. These results suggest that differentiation alters the state of chromatin and the interaction of non-histone protein/DNA acceptor sites with glucocorticoid receptors. These alterations may play a role in the acquisition of hormone resistance.  相似文献   

3.
The binding characteristics of partially purified glucocorticoid receptor complexes from hormone sensitive, non-differentiating BCL1 cells to sequentially deproteinized BCL1 chromatin-cellulose was investigated. [3H]Triamcinolone acetonide (TA)-receptor complexes were purified (approx. 30-fold) from DEAF-cellulose columns by salt elution which allowed receptor activation only in the absence of molybdate. Addition of 10 mM molybdate completely blocked salt activation. The binding pattern of the activated [3H]TA-receptor complexes to chromatin-cellulose extracted with 0–8 M guanidine hydrochloride revealed three regions of increased binding activity (acceptor sites), at 2, 5 and 7 M guanidine hydrochloride. Acceptor site binding was markedly reduced for chromatin extracted with 3, 6 and 8 M guanidine hydrochloride. Non-activated receptor complexes demonstrated very low binding to deproteinized chromatin. It was also shown that chromatin binding required glucocortical receptors and that free ligand or ligand bound to other proteins did not bind significantly to chromatin. In addition, binding of [3H]TA-receptor complexes to partially deproteinized chromatin was competable by unlabeled TA-receptor complexes. Scatchard analysis demonstrated that chromatin from non-differentiating BCL1 cells possesses multiple, high-affinity binding sites which differ in their affinity for the glucocorticoid receptor. Partially deproteinized chromatin from lipopolysaccharide-stimulated BCL1 cells demonstrated a different pattern of receptor binding, i.e., receptor binding was significantly greater to chromatin previously extracted with 6–8 M guanidine hydrochloride. These results suggest that differentiation alters the state of chromatin and the interaction of non-histone protein/DNA acceptor sites with glucocorticoid receptors. These alterations may play a role in the acquisition of hormone resistance.  相似文献   

4.
Acceptor sites for the oestrogen receptor in hen oviduct chromatin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Partially purified hen oviduct oestrogen receptors, charged with [3H]oestradiol, were shown to specifically bind in vitro to purified hen oviduct chromatin. Maximal binding occurred within 60min at 0 degrees C in a Tris buffer containing 0.1 M-KCl and 0.5 mM-phenylmethanesulphonyl fluoride. The binding of the [3H]oestradiol-receptor complexes to intact purified chromatin was saturable, whereas the receptor binding to hen DNA remained linear. Saturation was further demonstrated by the minimal acceptor binding of receptor charged with [3H]oestradiol plus 200-fold oestradiol compared with [3H]oestradiol receptors at equal [3H]oestradiol concentrations. Scatchard analysis of [3H]oestradiol-receptor binding to chromatin above DNA levels gave indications of high-affinity binding with a low capacity. Further, the nuclear binding was tissue-specific since the binding to hen spleen chromatin was negligible. To further uncover the specific acceptor sites, proteins were removed from hen oviduct chromatin by increasing concentrations of guanidine hydrochloride (1-7M). Those residual fractions extracted with 3-7 M-guanidine hydrochloride had the highest acceptor activity (above DNA levels) with the peak activity uncovered by 5 M-guanidine hydrochloride. To further characterize the oestrogen-receptor acceptor sites, oviduct chromatin was bound to hydroxyapatite in the presence of 3 M-NaCl and then protein fractions were extracted sequentially with 1-7 M-guanidine hydrochloride. Each fraction was then reconstituted to pure hen DNA by reverse gradient dialysis. [3H]Oestradiol receptors were found to bind to the greatest degree to the fraction reconstituted from the 5 M-guanidine hydrochloride protein extract. Reconstituted nucleoacidic proteins (NAP) from combined 4-7 M-guanidine hydrochloride protein extracts showed saturable binding by [3H]-oestradiol receptors, whereas binding to hen DNA did not saturate. The high affinity, low capacity, and specificity of binding of oestrogen receptors to NAP was similar to that found in intact chromatin. Thus, chromatin acceptor proteins for the oestrogen receptor have been partially isolated and characterized in the hen oviduct and display properties similar to that reported for the acceptor proteins of the progesterone receptor.  相似文献   

5.
Non-histone protein-DNA complexes with acceptor activity for estradiol-receptor complexes were reconstituted from fractionated calf uterine chromatin. Acceptor activity had tissue specificity with target tissue binding exceeding non-target tissue binding. The binding of estradiol-receptor complexes to acceptor sites was dependent on intact non-histone protein-DNA complexes, reconstituted select non-histone proteins, and protein equivalent: DNA reconstitution ratios. [3H]Estradiol-receptor complexes were bound to reconstituted non-histone protein-DNA complexes (i.e., nucleoacidic protein) with a high affinity and with a limited number of binding sites. Fractionation of uterine chromatin non-histone proteins identified two major sets of non-histone proteins which had acceptor activity when reconstituted with DNA. Thus, it seems possible to reconstitute nucleoacidic protein fractions with specific acceptor activity for the calf uterine estrogen receptor.  相似文献   

6.
Binding of glucocorticoid receptors to mammary chromatin acceptor sites   总被引:1,自引:0,他引:1  
We have recently characterized the interaction of mouse mammary estrogen receptors (ER) with mammary chromatin acceptor sites and demonstrated that ER from estrogen resistant lactating mammary glands do not bind to chromatin. In this study we have characterized the chromatin binding of the glucocorticoid receptor from mouse mammary glands isolated from nulliparous and lactating mice in order to better understand the relationship between receptor binding to chromatin and steroidogenic sensitivity of the tissue. Mammary chromatin was linked covalently to cellulose and deproteinized sequentially by 0-8 M Gdn-HCl. Binding to intact chromatin as well as to chromatin deproteinized by Gdn-HCl was determined using partially purified [3H]dexamethasone labelled glucocorticoid-receptor complexes (GR) obtained by fractionation on DEAE-cellulose columns. The binding of [3H]GR from mammary glands of nulliparous mice to chromatin fractions from the same tissue revealed maximal binding activity (acceptor sites) on chromatin previously extracted with 5-6 M Gdn-HCl. Binding of [3H]GR was of high affinity (Kd = 0.2 nM) and saturable. A simultaneous comparison of the chromatin binding patterns for [3H]ER and [3H]GR isolated from mammary glands of nulliparous mice revealed that the chromatin subfractions obtained with 4-6 M Gdn-HCl extraction contained acceptor sites for both [3H]ER and [3H]GR; however, while the [3H]ER bound to a 4.5 M and a 5.5 M site, the [3]GR bound a 5 M and a 6 M site. Competition experiments supported the steroid receptor specificity of the chromatin acceptor sites. Thus, the 4-6 M chromatin fractions contain distinct acceptor sites for the glucocorticoid receptor and for the estrogen receptor. In addition our studies reveal that the binding patterns of [3H]GR isolated from mammary glands of nulliparous and lactating mice to their homologous chromatin is essentially similar. Thus, in contrast to estrogen receptors, glucocorticoid receptors from lactating mammary glands are able to effectively bind to chromatin acceptor sites which supports our previous suggestion that the estrogenic insensitivity of lactating mouse mammary glands may at least be in part due to the impeded interaction of ER with chromatin acceptor sites.  相似文献   

7.
The activation by salt or ATP of [3H]estradiol- and [3H]H1285-receptor complexes from rabbit uterus and their binding capacity to DNA-cellulose, phosphocellulose and ATP-Sepharose has been studied. The estrogen-receptor was prepared in 1 mM molybdate which stabilized the receptor; but both salt- and ATP-transformation of estrogen receptors occurred. The binding of molybdate-stabilized cytosol [3H]estradiol-receptor complexes to the various resins revealed that salt-activation by 0.3 M KCl caused the greatest binding (5-6-fold) to DNA-cellulose as compared to other resins. However, 5 mM ATP-dependent activation of receptor-complexes resulted in preferential binding to ATP-Sepharose. Activated cytosol [3H]H1285-receptor complexes bound all the resins to a lesser degree when compared to [3H]estradiol-receptor complexes. Partially purified receptor complexes also showed different resin-binding patterns for salt- and ATP-mediated activation. These findings suggest that salt-activation is different than ATP-activation. Further, the differential magnitude of [3H]estradiol- and [3H]H1285-receptor activation suggests that estrogen-receptor complexes are "fully" activated as compared to "partially" activated antiestrogen-receptor complexes.  相似文献   

8.
Steroid antagonists, at receptor level, are valuable tools for elucidating the mechanism of steroid hormone action. We have examined and compared the interaction of avian and mammalian progesterone receptors with progestins; progesterone and R5020, and a newly synthesized antiprogesterone ZK98299. In the chicken oviduct cytosol, [3H]R5020 binding to macromolecule(s) could be eliminated with prior incubation of cytosol with excess radioinert steroids progesterone or R5020 but not ZK98299. Alternatively, [3H]ZK98299 binding in the chicken oviduct was not abolished in the presence of excess progesterone, R5020, or ZK98299. In the calf uterine cytosol, [3H]R5020 or [3H]ZK98299 binding was competeable with progesterone, R5020 and ZK98299 but not estradiol, DHT or cortisol. Furthermore, immunoprecipitation and protein A-Sepharose adsorption analysis revealed that in the calf uterine cytosol, the [3H]R5020-receptor complexes were recognized by anti-progesterone receptor monoclonal antibody PR6. This antibody, however, did not recognize [3H]ZK98299-receptor complexes. When phosphorylation of progesterone receptor was attempted in the chicken oviduct mince, presence of progesterone resulted in an increased phosphorylation of the known components A (79 kDa) and B (110 kDa) receptor proteins. Presence of ZK98299 neither enhanced the extent of phosphorylation of A and B proteins nor did it reverse the progesterone-dependent increase in the phosphorylation. The avian progesterone receptor, therefore, has unique steroid binding site(s) that exclude(s) interaction with ZK98299. The lack of immunorecognition of calf uterine [3H]ZK98299-receptor complexes, suggests that ZK98299 is either interacting with macromolecule(s) other than the progesterone receptor or with another site on the same protein. Alternatively, the antisteroid binds to the R5020 binding site but the complex adopts a conformation that is not recognized by the PRG antibodies.  相似文献   

9.
The binding of 3H-labelled androgen-receptor complexes, prepared by (NH4)2SO4 precipitation from the 105,000 g supernatant of hypothalamic cytosol, to hypothalamic chromatin of neonatal mice covalently coupled to cellulose was measured in vitro. Saturation binding was also determined after extraction of histones and the masking of acidic proteins with high molarities of guanidine hydrochloride. This investigation showed the presence of high-affinity, low-capacity acceptor sites for [3H]-testosterone-receptor complexes in male hypothalamic chromatin (Kd value = 0.39 x 10(-10) M and binding sites of 41 fmol per mg of DNA). Acceptor activity seems to be associated with the acidic protein fraction of chromatin. No specific acceptor sites of similar nature were found in chromatin taken from the hypothalami of female mice. On the basis of these results, it is suggested that the androgen-unresponsiveness of female mice is related to the absence of acceptors for the androgen-receptor in female mice hypothalami.  相似文献   

10.
We have examined steroid binding characteristics of a newly synthesized antisteroid, ZK98299 [onapristone, 11 beta-(4-dimethylaminophenyl)-17 alpha-hydroxy-17 beta-(3-hydroxypropyl)- 13 alpha-methyl-4,9-gonadien-3-one], in the calf uterus cytosol and compared the nature of this interaction with the binding of progesterone receptor (PR) agonist R5020 [promegestone, 17,21-dimethylpregna-4,9-diene-3,20-dione]. In the freshly prepared cytosol, [3H]ZK98299 interacted specifically with a macromolecule: the binding was abolished in the presence of excess progestins (R5020 and progesterone) and the antiprogesterone ZK98299. The high affinity (Kd = 2.5 nM) interaction between [3H]ZK98299 and PR was temperature- and time-dependent, reaching an optimum by 2-3 h at 0 degrees C, and was facilitated by 20 mM Na2MoO4. Under nontransforming conditions, [3H]ZK98299-receptor complexes sedimented as 8 S species in 8-30% linear glycerol gradients. Upon salt or thermal transformation, there was a loss of the 8 S form, with only a small fraction of total complexes (5-7%) binding to DNA-cellulose. In contrast, transformed [3H]R5020-receptor complexes exhibited a greater extent of binding (25-55%) to DNA-cellulose. [3H]ZK98299-receptor complexes could be resolved into two ionic species over DEAE-Sephacel following incubation of the complexes at 0 or 23 degrees C. [3H]ZK98299 binding was sensitive to sulfhydryl group modification as beta-mercaptoethanol increased the extent of steroid binding. Although treatment with iodoacetamide (IA) abolished [3H]R5020 binding, there was a significant (nearly twofold) increase in the [3H]ZK98299 binding. The results of this study point to similarities and differences between the steroid binding properties of the uterine PR occupied by R5020 and ZK98299: both steroids appear to bind the same 8 S receptor but exhibit differential DNA binding and sensitivity to IA. The reported antagonist properties of ZK98299 may, therefore, be explained on the basis of a distinct receptor conformation induced by the antisteroid.  相似文献   

11.
RU486 is a recently described antiprogesterone. In order to be able to understand its mechanism of action it is necessary to analyze its effect on a discrete gene product. We show here that the induction of uteroglobin mRNA by progesterone in the rabbit endometrium may be a suitable model for such studies since RU486 totally inhibits this effect without itself exerting any agonistic activity. Moreover, RU486, which does not bind to the estrogen receptor and is devoid of general antiestrogenic activity, partially inhibits the induction by estradiol of uteroglobin mRNA. Studies of the interaction between [3H]RU486 and the progesterone receptor have been undertaken with the aim of understanding the antagonistic effect of this compound. The binding to DNA-cellulose of heat-activated [3H]RU486-receptor complexes was slightly decreased (37%) when compared with that of the agonist [3H]R5020-receptor complexes (47%). Detailed analysis of this difference showed that it was due to both a decreased activation of complexes and to a diminished affinity of activated complexes towards DNA. The change in activation was shown by the fact that at high concentrations of DNA, where all activated complexes are bound, agonist-receptor complexes were bound to DNA in higher proportion than antagonist-receptor complexes. Moreover a difference was also observed when studying the binding of agonist-receptor and antagonist-receptor complexes to charged resins (phosphocellulose, DEAE-cellulose) which are known to discriminate between activated and non-activated complexes. Decreased affinity to DNA of antagonist-receptor complexes was shown by studying their binding at various concentrations of DNA, either in crude cytosol or after isolating a homogenous population of activated-receptor complexes by DNA-cellulose chromatography and by comparing the salt extraction from DNA-cellulose of agonist-receptor and antagonist-receptor complexes. Both effects (decreased activation and diminished affinity towards DNA) were relatively moderate and could account only for a small decrease in the agonistic activity of RU486. Thus, the fact that this compound is a complete antagonist without any agonistic activity can only be explained by a defect in some further step of hormone action as, for instance in the specific interaction with the regulatory regions of the uteroglobin gene. No immunological difference could be detected between [3H]R5020-receptor and [3H]RU486-receptor complexes, both interacted with the five monoclonal antibodies raised against purified R5020-receptor complexes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The purpose of the study presented was to investigate the effect of the extraction of histones on the template activity of DNA, measured by the autoradiographically evaluated intensity of [3H]actinomycin D ([3H]AMD) binding. The study was carried out on nuclei isolated from the root meristem of Pinus silvestris. Histones were removed selectively from them and reconstituted in the nuclei deprived of these proteins. The greatest rise in radioactivity was found after the extraction of the arginine fraction and that of lysine-rich and moderately lysine-rich fractions removed together, whereas the extraction of the lysine-rich fraction does not cause such a considerable increase in radioactivity. The reconstitution of particular histone fractions induced a fall in radioactivity to the level of controls in all the cases examined. No [3H]AMD binding to the nucleolus was found. The extraction of lysine histones results in the decondensation of chromatin and their reconstitution in the formation of complexes of compact chromatin.  相似文献   

13.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Interaction of the antioestrogen ICI 164,384 with the oestrogen receptor   总被引:6,自引:0,他引:6  
The use of partially purified preparations of the human uterine oestrogen receptor has enabled, for the first time, a study of the binding of the steroidal, pure antioestrogen ICI 164,384 [N-n-butyl-11-(3,17 beta-dihydroxy-oestra-1,3,5(10)-trien-7 alpha-yl)N-methyl-undecamide] to the oestrogen receptor. Scatchard analyses of the binding of [3H]oestradiol and [3H]ICI 164,384 to the receptor show that the equilibrium dissociation constants for the interactions of these ligands with the receptor at 0 degrees C are 0.44 and 0.69 nM respectively. The concentration of receptor binding sites for the agonist was 1986 fmol/mg protein whilst that for the antagonist was 1400 fmol/mg protein. The affinity of the antioestrogen-receptor complex for DNA-cellulose does not increase following exposure to conditions that transform the oestrogen-receptor complex.  相似文献   

16.
1. Nuclei of the calf uterus are endowed with an activity inactivating crude oestrogen-receptor complex. This activity has been partially purified. It shows a very high affinity for the oestrogen-receptor complex (Km = 0.8 X 10(-9) mol of specific [3H]oestradiol-17 beta-binding sites/l) as well as for the oestrogen-free receptor (Km = 1.5 X 10(-9) mol of specific [3H]oestradiol-17 beta binding sites/l). 2. The nuclear receptor-inactivating activity is enhanced by dithiothreitol and inhibited by several phosphatase inhibitors as well as by 4-nitrophenyl phosphate, as well known phosphatase substrate. This inhibition shows that a dephosphorylation process is required for the receptor inactivation. 3. The purified nuclear activity also inactivates pure receptor and phosphatase inhibitors prevent this inactivation. From these observations it appears that receptor inactivation is due to a nuclear phosphatase directly acting on the oestrogen receptor. 4. The nuclear localization of the receptor-inactivating activity, its high affinity for specific oestrogen binding sites and, as previously reported, its presence only in oestrogen target tissues suggest that this activity is the same as that involved in the nuclear loss of the receptor observed in intact cells.  相似文献   

17.
C Hurd  V K Moudgil 《Biochemistry》1988,27(10):3618-3623
We have examined and compared the binding characteristics of the progesterone agonist R5020 [promegestone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione] and the progesterone antagonist RU486 [mifepristone, 17 beta-hydroxy-11 beta-[4-(dimethylamino) phenyl]-17 alpha-(prop-1-ynyl)-estra-4,9-dien-3-one] in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting Kd values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4 degrees C, showing saturation of binding sites at 1-2 h for [3H]progesterone and 2-4 h for both [3H]R5020 and [3H]RU486. Addition of molybdate and glycerol to cytosol increased the extent of [3H]R5020 binding. The extent of [3H]RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the [3H]R5020- and [3H]RU486-receptor complexes at 37 degrees C. Although the rate of association of [3H]RU486 with the cytosolic macromolecule was slower than that of [3H]R5020, its dissociation from the ligand-macromolecule complex was significantly slower than [3H]R5020. Competitive steroid binding analysis revealed that [3H]progesterone, [3H]R5020, and [3H]RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S [3H]R5020 and [3H]RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Nuclear interactions of alpha-zearalanol (P-1496) and oestradiol-17 beta (E2) were compared following binding of these compounds to cytosolic oestrogen receptor. A single dose of P-1496 (400 micrograms) or E2 (25 micrograms) given subcutaneously to ovariectomized female rats resulted in two peaks of nuclear oestrogen-receptor concentrations at approx. 0.5 and 4.5 h and showed no qualitative differences between the two compounds. Under in vitro cell-free conditions, [3H]P-1496 was also able to cause oestrogen receptor retention by liver nuclei. Moreover, analysis of salt-extracted nuclear-bound receptor on sucrose gradients gave similar results to those obtained using [3H]E2 with a main peak of radioactivity sedimenting at 5S. Using [3H]P-1496, the time-course of nuclear retention was examined in both males and females. These studies showed no sex difference with nuclear-bound radioactivity reaching a plateau between 20-30 min. The ability of oestrogen-receptor complexes to bind to DNA was examined by DNA-cellulose chromatography. Using either [3H]E2 or [3H]P-1496 as the ligand, qualitative sex differences were shown in the number of peaks present. A comparison of chromatographic patterns obtained with the two ligands suggested close similarities in non-covalent DNA binding between the two compounds, in both males and females. These studies indicate that P-1496 is capable of causing retention of oestrogen receptor by liver nuclei and it binds to DNA in a manner similar to E2. Hence, our data do not explain the marked difference in oestrogenic activity observed in vivo between E2 and P-1496.  相似文献   

19.
The high-affinity triarylethylene anti-oestrogen H1285 [4-(NN-diethylaminoethoxy)-beta-ethyl-alpha-(p-hydroxyphenyl) -4'-methoxystilbene] was tritiated to high specific radioactivity (35 Ci/mmol). Competition experiments between [3H]H1285 and H1285 or oestradiol demonstrated that both compounds would compete with [3H]H1285 for oestrogen-specific binding sites in rat uterine cytosol. [3H]H1285 had at least 10 times the affinity for the receptor compared with oestradiol at the 50% competition level. [3H]H1285 appeared to have at least twice the association rate for the oestrogen receptor compared with [3H]oestradiol. In addition, the dissociation half-life (t1/2) of specific binding of [3H]H1285 to oestrogen receptors at 0 degrees C was about 220 h compared with a value of 60 h for [3H]oestradiol. Because of the extremely slow dissociation of [3H]H1285 from the oestrogen receptor, we were able to compare the sedimentation profiles of [3H]H1285-receptor complexes with those of [3H]oestradiol-receptor complexes in the presence of 0.4 M-KCl on 5-20% sucrose density gradients. [3H]Oestradiol-receptor complexes had a major peak at 4.4 S with a smaller peak at 5.6 S, whereas with [3H]H1285-receptor complexes the 5.6 S peak was always higher than the 4.4 S peak. There was significant variation between the dissociation behaviour at 20 degrees C of [3H]H1285-receptor complexes and [3H]oestradiol-receptor complexes pre-activated at 25 degrees C for 30 min in the presence and in the absence of 10 mM-sodium molybdate. The dissociation t1/2 of [3H]oestradiol-receptor complexes at 20 degrees C decreased from 1.5 h to 0.5 h when molybdate was present during heat treatment whereas the dissociation t1/2 for [3H]H1285-receptor complexes was 5 h for both conditions. These observations indicate that there are fundamental differences in the initial interaction of H1285 and oestradiol with the oestrogen receptor.  相似文献   

20.
The interaction of partially purified calf uterine estradiol-charged estrogen receptor ([3H]ER) with rat nuclei was studied in vitro. We previously observed a significantly greater number of [3H]ER binding sites (at saturation) in nuclei of R3230AC mammary tumors from intact vs ovariectomized (ovex) rats with no difference in the affinity of [3H]ER binding for these nuclei. We now report on the nuclease sensitivity of [3H]ER binding sites in nuclei from these tumors and from normal rat tissues. Digestion of tumor nuclei with deoxyribonuclease I (DNase I) prior to incubation with [3H]ER in vitro resulted in a progressive loss of [3H]ER binding capacity, which was not accompanied by alterations in the affinity of [3H]ER for the nuclei (Kd = 1-3 nM). A significantly lower concentration (P less than 0.005) of DNase I eliminated 50% of the [3H]ER binding sites in nuclei of tumors from intact hosts (8 unit.min/ml) compared to tumors from ovex hosts (22 unit.min/ml). These results indicate that DNA regions capable of binding ER are more susceptible to DNase I digestion in tumors from intact rats than those from ovex hosts, suggesting that the endogenous hormonal milieu is responsible, at least in part, for maintenance of nuclease-sensitive DNA conformations in this hormone-responsive mammary tumor. The amount of DNase I required to eliminate 50% of [3H]ER binding to nuclei from lactating mammary gland, liver, and kidney ranged from 14 to 56 unit.min/ml. Therefore, accessibility of [3H]ER binding sites to nuclease digestion in normal rat tissue is generally less than that of R3230AC tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号