共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Recent data from several groups suggest that the primary mechanism of β-amyloid neurotoxicity may be mediated by reactive oxygen species. To evaluate this hypothesis, we first compared the efficacy of antioxidant agents in preventing toxicity caused by oxidative insults (iron, hydrogen peroxide, and tert -butyl hydroperoxide) and β-amyloid peptides in cultured rat hippocampal neurons. Tested antioxidants (propyl gallate, Trolox, probucol, and promethazine) generally provided significant protection against oxidative insults but not β-amyloid peptides. Next, we examined whether β-amyloid causes oxidative stress, by comparing levels of lipid peroxidation after exposure to either iron or β-amyloid. In a cell-free system, iron but not β-amyloid generated lipid peroxidation. In culture, both insults caused rapid increases in lipid peroxidation, with iron inducing higher levels at later time points. Pretreatment with the antioxidant probucol significantly reduced lipid peroxidation caused by both insults but only attenuated iron toxicity, suggesting that lipid peroxidation does not contribute directly to cell death induced by β-amyloid. Finally, we observed that increasing basal levels of oxidative stress by pretreating cultures with subtoxic doses of iron significantly increased neuronal vulnerability to β-amyloid. The ability of β-amyloid to induce oxidative stress and the demonstration that oxidative stress potentiates β-amyloid toxicity support the clinical use of antioxidants for AD. However, these data do not support the theory that the primary mechanism of β-amyloid toxicity involves oxidative pathways, indicating a continued need to identify additional cellular responses to β-amyloid that underlie its neurodegenerative actions. 相似文献
2.
William P. Esler Evelyn R. Stimson Joan M. Jennings †Joseph R. Ghilardi †Patrick W. Mantyh John E. Maggio 《Journal of neurochemistry》1996,66(2):723-732
Abstract: The major pathological feature of Alzheimer's disease is the presence of a high density of amyloid plaques in the brain tissue of patients. The plaques are predominantly composed of human β-amyloid peptide (Aβ), a 39–43-mer peptide the neurotoxicity of which is related to its aggregation state. Previous work has demonstrated that certain metals that have been implicated as risk factors for Alzheimer's disease (Al, Fe, and Zn) also cause substantial aggregation of Aβ. In particular, we reported that zinc cations at concentrations of >10?4M dramatically accelerate the rate of Aβ aggregation at physiological peptide concentrations at 37°C in vitro. In the present study, we investigate the effect of Zn2+ on aggregation of radiolabeled and unlabeled human and rat Aβ over a wide range of peptide concentrations in the presence and absence of salt and blocking protein. Aggregation was assayed by centrifugation and filtration using amino acid analysis, immunoassay, and γ-counting for quantification over a wide range of concentrations of Zn2+ and Aβ above and below physiological values. The results of this study demonstrate the following: (a) Radio-iodinated Aβ accurately tracked unlabeled Aβ, (b) zinc concentrations of at least 10?4M were required to induce significant aggregation of Aβ, and (c) rat and human Aβ species were cleared from aqueous solutions by similar concentrations of zinc. These results stand in significant quantitative disagreement (~100-fold in zinc concentration) with one previous study that reported significant aggregation of Aβ by <1 µM Zn2+. Differences between the present study and the latter study from another laboratory appear to result from inappropriate reliance on optical density to measure Aβ concentrations and nonspecific loss of Aβ to plastic in the absence of blocking protein. 相似文献
3.
Abstract: β-Amyloid is a metabolic product of the amyloid precursor protein, which accumulates abnormally in senile plaques in the brains of patients with Alzheimer's disease. The neurotoxicity of 0-amyloid has been observed in cell culture and in vivo, but the mechanism of this effect is unclear. In this report, we describe the direct neurotoxicity of β-amyloid in high-density primary cultures of human fetal cortex. In 36-day-old cortical cultures, β-amyloid neurotoxicity was not inhibited by the broad-spectrum excitatory amino acid receptor antagonist kynurenate or the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid under conditions that inhibited glutamate and NMDA neurotoxicity. In 8-day-old cortical cultures, neurons were resistant to glutamate and NMDA toxicity but were still susceptible to β-amyloid neurotoxicity, which was unaffected by excitatory amino acid receptor antagonists. Treatment with β-amyloid caused chronic neurodegenera-tive changes, including neuronal clumping and dystrophic neurites, whereas glutamate treatment caused rapid neuronal swelling and neurite fragmentation. These results suggest that β-amyloid is directly neurotoxic to primary human cortical neurons by a mechanism that does not involve excitatory amino acid receptors. 相似文献
4.
Christian J. Pike Patrick J. Vaughan Dennis D. Cunningham Carl W. Cotman 《Journal of neurochemistry》1996,66(4):1374-1382
Abstract: β-Amyloid protein has been implicated as a potential causative agent in the neuropathology associated with Alzheimer's disease. This possibility is supported by observations that β-amyloid induces neuronal degeneration and astrocyte reactivity in vitro by as yet undefined mechanism(s). In this report, we present data demonstrating that the pathological effects of β-amyloid on cultured cells are modulated by activation of the thrombin receptor. At concentrations between 50 and 500 n M , thrombin pretreatment significantly attenuates neurotoxicity mediated by fibrillar aggregates of β1–42 and β25–35 peptides. In cultured astrocytes, the stellate morphology induced by β1–42 and β25–35 aggregates can be prevented and reversed by thrombin exposures between 10 p M and 1 µ M . In contrast, thrombin potentiates rather than attenuates the β-amyloid-induced increased expression of basic fibroblast growth factor, suggesting that thrombin differentially modulates the effects of β-amyloid on astrocytes. Thrombin's effects on both neurons and astrocytes are mimicked by thrombin receptor-activating peptide and inhibited by two potent thrombin inhibitors, hirudin and protease nexin-1. These data provide both new insight into the signaling pathways underlying the cellular effects of β-amyloid and additional support for the role of thrombin as an important mediator of neuropathological events. 相似文献
5.
Karine Ancolio Philippe Marambaud Pascale Dauch Frédéric Checler 《Journal of neurochemistry》1997,69(6):2494-2499
Abstract: Recent reports indicate that missense mutations on presenilin (PS) 1 are likely responsible for the main early-onset familial forms of Alzheimer's disease (FAD). Consensual data obtained through distinct histopathological, cell biology, and molecular biology approaches have led to the conclusion that these PS1 mutations clearly trigger an increased production of the 42-amino-acid-long species of β-amyloid peptide (Aβ). Here we show that overexpression of wild-type PS1 in HK293 cells increases Aβ40 secretion. By contrast, FAD-linked mutants of PS1 trigger increased secretion of both Aβ40 and Aβ42 but clearly favor the production of the latter species. We also demonstrate that overexpression of the wild-type PS1 augments the α-secretase-derived C-terminally truncated fragment of β-amyloid precursor protein (APPα) recovery, whereas transfectants expressing mutated PS1 secrete drastically lower amounts of APPα when compared with cells expressing wild-type PS1. This decrease was also observed when comparing double transfectants overexpressing wild-type β-amyloid precursor protein and either PS1 or its mutated congener M146V-PS1. Altogether, our data indicate that PS mutations linked to FAD not only trigger an increased ratio of Aβ42 over total Aβ secretion but concomitantly down-regulate the production of APPα. 相似文献
6.
Christian J. Pike rea J. Walencewicz-Wasserman Joseph Kosmoski David H. Cribbs Charles G. Glabe Carl W. Cotman 《Journal of neurochemistry》1995,64(1):253-265
Abstract: The neurodegeneration of Alzheimer's disease has been theorized to be mediated, at least in part, by insoluble aggregates of β-amyloid protein that are widely distributed in the form of plaques throughout brain regions affected by the disease. Previous studies by our laboratory and others have demonstrated that the neurotoxicity of β-amyloid in vitro is dependent upon its spontaneous adoption of an aggregated structure. In this study, we report extensive structure-activity analyses of a series of peptides derived from both the proposed active fragment of β-amyloid, β25–35, and the full-length protein, β1–42. We examine the effects of amino acid residue deletions and substitutions on the ability of β-amyloid peptides to both form sedimentable aggregates and induce toxicity in cultured hippocampal neurons. We observe that significant levels of peptide aggregation are always associated with significant β-amyloid-induced neurotoxicity. Further, both N- and C-terminal regions of β25–35 appear to contribute to these processes. In particular, significant disruption of peptide aggregation and toxicity result from alterations in the β33–35 region. In β1–42 peptides, aggregation disruption is evidenced by changes in both electrophoresis profiles and fibril morphology visualized at the light and electron microscope levels. Using circular dichroism analysis in a subset of peptides, we observed classic features of β-sheet secondary structure in aggregating, toxic β-amyloid peptides but not in nonaggregating, nontoxic β-amyloid peptides. Together, these data further define the primary and secondary structures of β-amyloid that are involved in its in vitro assembly into neurotoxic peptide aggregates and may underlie both its pathological deposition and subsequent degenerative effects in Alzheimer's disease. 相似文献
7.
† Béatrice Leveugle Wanhong Ding ‡Fenart Laurence ‡Marie-Pierre Dehouck Andrew Scanameo ‡Roméo Cecchelli Howard Fillit 《Journal of neurochemistry》1998,70(2):736-744
Abstract: We have previously demonstrated that full-length heparin stimulates the synthesis and secretion of β-amyloid precursor protein (APP) through an amyloidogenic pathway in neuroblastoma cells. In the present study, heparin was chemically depolymerized, and the effect of low-molecular-weight (LMW) heparin on APP secretion was investigated. In contrast to full-length heparin, LMW heparin had no significant effect on APP secretion. However, LMW heparin fragments, especially heparin disaccharides, were able to inhibit efficiently the stimulatory effect of heparin on APP secretion. LMW heparin derivatives also inhibit the binding of heparin to the β-amyloid peptide (1–28). Using an in vitro model, we further demonstrated the passage of LMW heparin derivatives through the blood-brain barrier. This study suggests that LMW heparin derivatives or analogues may be effective as therapeutic agents to prevent or slow the process of amyloidogenesis in Alzheimer's disease. 相似文献
8.
Abstract: Recent evidence suggests that β-amyloid peptide (β-AP) may induce tau protein phosphorylation, resulting in loss of microtubule binding capacity and formation of paired helical filaments. The mechanism by which β-AP increases tau phosphorylation, however, is unclear. Using a hybrid septal cell line, SN56, we demonstrate that aggregated β-AP1–40 treatment caused cell injury. Accompanying the cell injury, the levels of phosphorylated tau as well as total tau were enhanced as detected immunochemically by AT8, PHF-1, Tau-1, and Tau-5 antibodies. Alkaline phosphatase treatment abolished AT8 and PHF-1 immunoreactivity, confirming that the tau phosphorylation sites were at least at Ser199/202 and Ser396 . In association with the increase in tau phosphorylation, the immunoreactivity of cell-associated and secreted β-amyloid precursor protein (β-APP) was markedly elevated. Application of antisense oligonucleotide to β-APP reduced expression of β-APP and immunoreactivity of phosphorylated tau. Control peptide β-AP1–28 did not produce significant effects on tau phosphorylation, although it slightly increased cell-associated β-APP. These results suggest that βAP1–40 -induced tau phosphorylation may be associated with increased β-APP expression in degenerated neurons. 相似文献
9.
Gianluigi Forloni Elisa Lucca Nadia Angeretti Paola Della Torre †Mario Salmona 《Journal of neurochemistry》1997,69(5):2048-2054
Abstract: β-Amyloid accumulates in cerebral deposits in Alzheimer's disease, so to test the correlation between the neurotoxic and fibrillogenic capacity of β-amyloid, we synthesized a peptide homologous to fragment 25–35 of β-amyloid (β25–35) and amidated at the C-terminus (β25–35-NH2 ). As the amidation strongly reduced the amyloidogenic capacity of β25–35, we compared its neurotoxic activity in the amidated (β25–35-NH2 ) and nonamidated forms. The viability of primary cultures from fetal rat hippocampus was reduced in a dose-related manner (10–100 µ M ) similarly by β25–35 and β25–35-NH2 , whereas a scrambled peptide, amidated or nonamidated, did not alter the neuronal viability. The neurotoxic activity of β25–35-NH2 is mediated by apoptosis as demonstrated by morphological and biochemical investigations. Electron microscopy examination of culture media with β25–35 or β25–35-NH2 incubated with neuronal cells for 7 days confirmed the high level of fibrillogenic activity of β25–35 and the almost total absence of fibrils in the solution with β25–35-NH2 . Furthermore, staining with thioflavine S was used to identify amyloid fibrils, and only the cultures exposed to β25–35 exhibited intense staining associated with neuronal membranes. These data indicate that the neurotoxic activity of the β-amyloid fragment is independent of the aggregated state of the peptide. 相似文献
10.
Laminin 1 Attenuates β-Amyloid Peptide Aβ(1-40) Neurotoxicity
of Cultured Fetal Rat Cortical Neurons
Béatrice Drouet Martine Pinçon Raymond Jean Chambaz & Thierry Pillot 《Journal of neurochemistry》1999,73(2):742-749
A growing amount of evidence indicates the involvement of extracellular matrix components, especially laminins, in the development of Alzheimer's disease, although their role remains unclear. In this study, we clearly demonstrate that laminin 1 inhibits beta-amyloid peptide (Abeta)-induced neuronal cell death by preventing the fibril formation and interaction of the Abeta peptide with cell membranes. The presence of laminin at a laminin/Abeta peptide molar ratio of 1:800 significantly inhibits the Abeta-induced apoptotic events, together with inhibition of amyloid fibril formation. The inhibitory effects of laminin 1 were time- and dose-dependent, whereas laminin 2 had less effect on Abeta neurotoxicity. A preincubation of laminin and Abeta was not required to observe the protective effect of laminin, suggesting a direct interaction between laminin 1 and Abeta. Moreover, laminin had no effect on the toxicity of the fibrillar Abeta peptide, suggesting an interaction of laminin with nonfibrillar species of the Abeta peptide, sequestering the peptide in a soluble form. These data extend our understanding of laminin-dependent binding of Abeta and highlight the possible modulation role of laminin regarding Abeta aggregation and neurotoxicity in vivo. 相似文献
11.
Fumitaka Oyama Hiroyuki Shimada† Rieko Oyama Koiti Titani Yasuo Ihara†‡ 《Journal of neurochemistry》1993,60(5):1658-1664
Abstract: To learn whether or not the levels of β-amyloid protein precursor (APP) and τ mRNAs are related to the formation of β-amyloid and neurofibrillary tangles, we quantified these mRNA levels in three cortical regions of 38 aged human brains, which were examined immunocyto-chemically for β-amyloid and tangles. Marked individual variabilities were noted in APP and τ mRNA levels among elderly individuals. The mean APP mRNA level was slightly reduced in the β-amyloid plaque (++) group, but not in the plaque (+) group, compared to the plaque (−) group. Some brains in the plaque (−) group showed increased APP expression, the extent of which was not seen in the plaque (+)or(++) group. The differences in the mean τ mRNA levels were not statistically significant among the tangle (−), (+), and (++) groups. These results show that β-protein and τ deposition do not accompany increased expression of the APP and τ genes, respectively, and thus suggest that factors other than gene expression may be at work in the progression of β-amyloid and/or tangle formation in the aged human brain. 相似文献
12.
Kurt R. Brunden Nancy J. Richter-Cook Nishith Chaturvedi Robert C. A. Frederickson 《Journal of neurochemistry》1993,61(6):2147-2154
The seinile plaques found within the cerebral cortex and hippocampus of the Alzheimer disease brain contain β-amyloid peptide (Aβ) fibrils that are associated with a variety of macromolecular species, including dermatan sulfate proteoglycan and heparan sulfate proteoglycan. The latter has been shown recently to bind tightly to both amyloid precursor protein and A/β, and this binding has been attributed largely to the interaction of the core protein of heparan sulfate proteoglycan with Aβ and its precursor. Here we have examined the ability of synthetic Aβ s to bind to and interact with the glycosaminoglycan moieties of proteoglycans. Aβ(1–28) associates with heparin, heparan sulfate, dermatan sulfate, and chondroitin sulfate. The interaction of these sulfated polysaccharides with the amyloid peptide results in the formation of large aggregates that are readily sedimented by centrifugation. The ability of both Aβ(1–28) and Aβ(1–40) to bind glycosaminoglycans is pH-dependent, with increasing interaction as the pH values fall below neutrality and very little binding at pH 8.0. The pH profile of heparin-induced aggregation of Aβ(1–28) has a midpoint pH of approximately 6.5, suggesting that one or more histidine residues must be protonated for binding to occur. Analysis of the Aβ sequence reveals a consensus heparin-binding domain at residues 12–17, and this motif contains histidines at positions 13 and 14 that may be involved in the interaction with glycosaminoglycans. This hypothesis is supported by the following observations: (a) Aβ(13–17) binds tightly to a heparin affinity column at pH 4.0, but not at pH 8.0; and (b) an Aβ(13–17) in which histidine residues 13 and 14 have been replaced with serines does not bind to a heparin column at either pH 8.0 or 4.0. Together, the data indicate that Aβ is capable of binding to the glycosaminoglycan chains of proteoglycans, and such an interaction may be relevant to the etiology and pathology of Alzheimer's disease. 相似文献
13.
†‡ Gunnar K. Gouras ‡Huaxi Xu ‡Jasmina N. Jovanovic ‡Joseph D. Buxbaum §Rong Wang ‡Paul Greengard †Norman R. Relkin Sam Gandy 《Journal of neurochemistry》1998,71(5):1920-1925
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42 ; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42 ; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35 S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1 ), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11 ) at the N terminus, rather than Aβ(Leu17 ) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation. 相似文献
14.
The cellular factors regulating the generation of β-amyloid from the amyloid precursor protein (APR) are unknown. Activation of protein kinase C (PKC) by phorbol ester treatment inhibited the generation of the 4-kDa β-amyloid peptide in transfected COS cells, a human glioma cell line, and human cortical astrocytes. An analogue of diacylglycerol, the endogenous cellular activator of PKC, also inhibited the generation of β-amyloid. Activation of PKC increased the level of secreted APP in transfected COS cells but did not significantly affect the level of secreted APP in primary human astrocytes or in the glioma cell line. Cell-associated APP and the secreted APP derivative, but not β-amyloid, were phosphorylated on serine residues. Activation of PKC did not increase the level of APP phosphorylation, suggesting that PKC modulates the proteolytic cleavage of APP indirectly by phosphorylation of other substrates. These results indicate that PKC activation inhibits β-amyloid production by altering APP processing and suggest that β-amyloid production can be regulated by the phospholipase C-diacylglycerol signal transduction pathway. 相似文献
15.
C. S. Casley L. Canevari J. M. Land † J. B. Clark M. A. Sharpe 《Journal of neurochemistry》2002,80(1):91-100
Disrupted energy metabolism, in particular reduced activity of cytochrome oxidase (EC 1.9.3.1), alpha-ketoglutarate dehydrogenase (EC 1.2.4.2) and pyruvate dehydrogenase (EC 1.2.4.1) have been reported in post-mortem Alzheimer's disease brain. beta-Amyloid is strongly implicated in Alzheimer's pathology and can be formed intracellularly in neurones. We have investigated the possibility that beta-amyloid itself disrupts mitochondrial function. Isolated rat brain mitochondria have been incubated with the beta-amyloid alone or together with nitric oxide, which is known to be elevated in Alzheimer's brain. Mitochondrial respiration, electron transport chain complex activities, alpha-ketoglutarate dehydrogenase activity and pyruvate dehydrogenase activity have been measured. Beta-amyloid caused a significant reduction in state 3 and state 4 mitochondrial respiration that was further diminished by the addition of nitric oxide. Cytochrome oxidase, alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase activities were inhibited by beta-amyloid. The K(m) of cytochrome oxidase for reduced cytochrome c was raised by beta-amyloid. We conclude that beta-amyloid can directly disrupt mitochondrial function, inhibits key enzymes and may contribute to the deficiency of energy metabolism seen in Alzheimer's disease. 相似文献
16.
† Henry W. Querfurth Jinwei Jiang §Jonathan D. Geiger ‡Dennis J. Selkoe 《Journal of neurochemistry》1997,69(4):1580-1591
Abstract: Extracellular amyloid β-peptide (Aβ) deposition is a pathological feature of Alzheimer's disease and the aging brain. Intracellular Aβ accumulation is observed in the human muscle disease, inclusion body myositis. Aβ has been reported to be toxic to neurons through disruption of normal calcium homeostasis. The pathogenic role of Aβ in inclusion body myositis is not as clear. Elevation of intracellular calcium following application of calcium ionophore increases the generation of Aβ from its precursor protein (βAPP). A receptor-based mechanism for the increase in Aβ production has not been reported to our knowledge. Here, we use caffeine to stimulate ryanodine receptor (RYR)-regulated intracellular calcium release channels and show that internal calcium stores also participate in the genesis of Aβ. In cultured HEK293 cells transfected with βAPP cDNA, caffeine (5–10 m M ) significantly increased the release of Aβ fourfold compared with control. These actions of caffeine were saturable, modulated by ryanodine, and inhibited by the RYR antagonists ruthenium red and procaine. The calcium reuptake inhibitors thapsigargin and cyclopiazonic acid potentiated caffeine-stimulated Aβ release. NH4 Cl and monensin, agents that alter acidic gradients in intracellular vesicles, abolished both the caffeine and ionophore effects. Immunocytochemical studies showed some correspondence between the distribution patterns of RYR and cellular βAPP immunoreactivities. The relevance of these findings to Alzheimer's disease and inclusion body myositis is discussed. 相似文献
17.
† Virginia L. Smith-Swintosky ‡§L. Creed Pettigrew ‡§Susan D. Craddock ¶Alan R. Culwell ¶Russell E. Rydel †Mark P. Mattson 《Journal of neurochemistry》1994,63(2):781-784
Abstract: The β-amyloid precursor protein (βAPP) is the source of the amyloid β-peptide that accumulates in the brain in Alzheimer's disease. A major processing pathway for βAPP involves an enzymatic cleavage within the amyloid β-peptide sequence that liberates secreted forms of βAPP (APPS s) into the extracellular milieu. We now report that postischemic administration of these APPS s intracerebroventricularly protects neurons in the CA1 region of rat hippocampus against ischemic injury. Treatment with APPS 695 or APPS 751 resulted in increased neuronal survival, and the surviving cells were functional as demonstrated by their ability to synthesize protein. These data provide direct evidence for a neuroprotective action of APPS s in vivo. 相似文献
18.
Abstract: The genes for both the β-amyloid precursor protein and apolipoprotein E (ApoE) have been linked to Alzheimer's disease. This connection suggests the possibility that these proteins interact physically or functionally. To explore this idea, we focused on the neuroprotective activity of secreted amyloid precursor protein (sAPP) and related signal transduction events. After coincubation with ApoE, sAPP exhibited an enhanced [Ca2+ ]i -lowering activity and enhanced protection against excitotoxicity in rat primary hippocampal neurons. In contrast, the stimulation of phosphoinositide production by sAPP was inhibited by ApoE. Kinetic analyses and coimmunoprecipitation experiments indicated that these actions result from formation of a heteromeric complex between ApoE and sAPP. Furthermore, the ApoE4 isoform, which seems to accelerate the onset of Alzheimer's disease, was less potent than ApoE3 in modifying each activity of sAPP. These data suggest that sAPP-dependent neuroprotective mechanisms would be compromised in individuals expressing ApoE4, a scenario that may contribute to the development of Alzheimer's disease. 相似文献
19.
† Ken-ichiro Fukuchi †Tauni Ohman Nocthao Dang Anetta C. Smith ‡Clement E. Furlong George M. Martin 《Journal of neurochemistry》1996,66(5):2201-2204
Abstract: P19 is a C3H mouse-derived line of multipotent embryonic carcinoma cells that differentiate into neural cells. P19 cell clones overexpressing the three major forms of β-amyloid precursor protein from their cDNA constructs were established. Unlike a previous study in which P19-derived neurons had a limited α-secretase activity, all of these clones produced significant amounts of secreted β-amyloid precursor protein. When treated with retinoic acid, these transformed lines differentiated into neurons and survived better than did nontransformed parental P19 cells. Furthermore, P19-derived neurons survived better in medium conditioned by the transformed P19 line, and survival was reduced by immunoabsorption with an antibody to β-amyloid precursor protein. These results suggest neurotrophic effects of secreted β-amyloid precursor protein and contrast with a previous report in which overexpression of a full-length cDNA for β-amyloid precursor protein led to degeneration of P19-derived neurons. Western blot analysis suggested that this difference might result from different levels of expression of putative neurotoxic C-terminal fragments of β-amyloid precursor protein; moreover, P19-derived neurons differ from P19 stem cells in the processing of these C-terminal fragments. 相似文献
20.
M. L. Michaelis N. Ranciat Y. Chen M. Bechtel R. Ragan M. Hepperle Y. Liu G. Georg 《Journal of neurochemistry》1998,70(4):1623-1627
Abstract: Neurofibrillary tangles in Alzheimer's disease contain aggregates of abnormally phosphorylated microtubule-associated protein τ, indicating that microtubule breakdown is a primary event in the neurodegenerative cascade. Recent studies have shown that addition to neuronal cultures of amyloid peptides found in Alzheimer's leads to abnormal phosphorylation of τ and neurofibrillary pathology. We tested the possibility that the microtubule-stabilizing drug paclitaxel (Taxol) might protect primary neurons against amyloid-induced toxicity. Neurons exposed to aggregated amyloid peptides 25–35 and 1–42 became pyknotic with degenerating neurites within 24 h. Treatment of cultures with paclitaxel either 2 h before or 2 h after addition of the peptide prevented these morphological alterations. When numbers of viable cells were determined in cultures exposed to amyloid peptide with or without paclitaxel for 24 or 96 h, the percentage of surviving cells was significantly higher in paclitaxel-treated cultures, and activation of the apoptosis-associated protease CPP32 was significantly reduced. These observations indicate that microtubule-stabilizing drugs may help slow development of the neurofibrillary pathology that leads to the loss of neuronal integrity in Alzheimer's disease. 相似文献