首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, and gammadelta T cells are involved in the protective immune response against viral challenge. We have now examined whether gammadelta T cells contribute to the development of adaptive immune responses that help control WN virus infection. Approximately 15% of TCRdelta(-/-) mice survived primary infection with WN virus compared with 80-85% of the wild-type mice. These mice were more susceptible to secondary challenge with WN virus than the wild-type mice that survived primary challenge with the virus. Depletion of gammadelta T cells in wild-type mice that survived the primary infection, however, does not affect host susceptibility during secondary challenge with WN virus. Furthermore, gammadelta T cells do not influence the development of Ab responses during primary and at the early stages of secondary infection with WN virus. Adoptive transfer of CD8(+) T cells from wild-type mice that survived primary infection with WN virus to naive mice afforded partial protection from lethal infection. In contrast, transfer of CD8(+) T cells from TCRdelta(-/-) mice that survived primary challenge with WN virus failed to alter infection in naive mice. This difference in survival correlated with the numeric and functional reduction of CD8 memory T cells in these mice. These data demonstrate that gammadelta T cells directly link innate and adaptive immunity during WN virus infection.  相似文献   

2.
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, thereby partially mimicking human disease. Using this model, we have demonstrated that mice deficient in gammadelta T cells are more susceptible to WN virus infection. TCRdelta(-/-) mice have elevated viral loads and greater dissemination of the pathogen to the CNS. In wild-type mice, gammadelta T cells expanded significantly during WN virus infection, produced IFN-gamma in ex vivo assays, and enhanced perforin expression by splenic T cells. Adoptive transfer of gammadelta T cells to TCRdelta(-/-) mice reduced the susceptibility of these mice to WN virus, and this effect was primarily due to IFN-gamma-producing gammadelta T cells. These data demonstrate a distinct role for gammadelta T cells in the control of and prevention of mortality from murine WN virus infection.  相似文献   

3.
Influenza virus infection is a significant public health problem; however factors affecting the incidence and severity of disease have not been fully elucidated. The present study sought to examine the role of sex and stress in mediating susceptibility to an influenza viral infection in mice. Male and female mice underwent repeated cycles of restraint (RST) stress, followed by an influenza A/PR8 virus infection. Following these manipulations, levels of circulating corticosterone, lung proinflammatory cytokine gene expression and sickness behavior were examined. The data indicate sex differences in several aspects of the response to the A/PR8 virus infection. The kinetics of lung interleukin-1β mRNA expression were faster in infected males compared to females, while circulating corticosterone levels were elevated in infected females, but not in males. Anorexia and reduced saccharin consumption began earlier and symptoms were more pronounced in infected males than in females. In addition, RST modulated the response to the A/PR8 virus infection. Proinflammatory cytokine gene expression in response to infection was enhanced and sickness behavior was modulated by RST in both males and females. These data suggest that males mount more vigorous immune and behavioral responses to influenza viral infection compared to females, and stress exacerbates the response in both males and females. In conclusion, complex interactions between biological and behavioral factors are involved in mediating individual differences in health and disease. Additional studies may help uncover some of the factors contributing to the individual differences in susceptibility to influenza infection.  相似文献   

4.
Nosema algerae Vávra and Undeen 1970, a microsporidian known to cause infection in mosquitoes, develops in mammalian cell cultures at 24-35 degrees C and in the tails and footpads of athymic mice. More recently it has been reported to grow at 38 degrees C in human cell culture. The present study is a two-part temperature/development examination. The first part examines the development of N. algerae in rabbit kidney cell culture at 29 degrees C, which permits the formation of functional spores within 72 h, and compares the effect of elevated temperatures (36.0, 36.5, 37 degrees C) on parasite development. At these elevated temperatures, N. algerae infects but undergoes only one or two proliferative divisions, with no evidence of sporogony by 72 h post-inoculation. During this time, however, the host cells continue to divide resulting in fewer infected cells over time and giving the appearance of a diminished parasitemia. Additionally, at 37 degrees C some organisms degenerate/hibernate by 72 h while others remain viable/active. It is not until 96 h that the parasites appear in large clusters of proliferative stages in the few host cells that are infected. By 120 h post-inoculation, proliferative cells, sporoblasts, and early spores are observed. These results suggest that elevated temperatures impede proliferation rates and the onset of sporogony. The second part of this study evaluates developmental changes in N. algerae when incubation temperatures and times are varied during parasite growth, resulting in abnormal parasite morphology. These abnormalities were not present when parasites were grown at constant temperature (29-37 degrees C). This report demonstrates that N. algerae can successfully develop at high temperatures (37 degrees C), justifying its taxonomic relocation to the genus Brachiola.  相似文献   

5.
Oral susceptibility and vertical transmission of dengue virus type 2 (DENV-2) in an Aedes albopictus sample from Rio de Janeiro was estimated. The infection (36.7%) and transmission (83.3%) rates for Ae. albopictus were higher than those of an Ae. aegypti colony used as control, 32.8 and 60%, respectively. Fourth instar larvae and females descendants of 48.5 and 39.1% of experimentally infected Ae. albopictus showed to harbor the virus. The oral susceptibility and the high capacity to assure vertical transmission exhibited by Ae. albopictus from Brazil reinforce that this species may play a role in the maintenance of the virus in nature and be a threat for dengue control in the country.  相似文献   

6.
In 1999 West Nile (WN) virus was introduced to North America where this flavivirus has spread rapidly among wildlife (especially birds) transmitted by various species of mosquitoes (Diptera: Culicidae). Increasing numbers of cases and deaths among humans, horses and other domestic animals require development of effective vaccines. 'ChimeriVax-West Nile(vet)' is being developed for use as a veterinary vaccine to protect against WN infection. This chimeric virus contains the pre-membrane (prM) and envelope (E) genes from the wild-type WN NY99 virus (isolated from a flamingo in New York zoo during the 1999 WN epidemic) in the backbone of yellow fever (YF) 17D vaccine virus. Replication kinetics of ChimeriVax-WN(vet) virus were evaluated in mosquito cell culture (Aedes albopictus C6/36), in WN vector mosquitoes [Culex tritaeniorhynchus Giles, Cx. nigripalpus Theobald and Cx. quinquefasciatus Say (Diptera: Culicidae)] and in YF vectors [Aedes aegypti (L) and Ae. albopictus (Skuse)], to determine whether these mosquitoes become infected through feeding on a viraemic vaccine, and their potential infectivity to transmit the virus. Growth of ChimeriVax-WN(vet) virus was found to be restricted in mosquitoes, compared to WN virus in Ae. albopictus C6/36 cells. When inoculated intrathoracically, ChimeriVax-WN(vet) and YF 17D viruses did not replicate in Cx. tritaeniorhynchus or Cx. nigripalpus; replication was very restricted compared to the wild-type WN virus in Cx. quinquefasciatus, Ae. aegypti and Ae. albopictus. When fed on hanging drops with ChimeriVax-WN(vet) virus (7.7 log10 PFU/mL), none of the Culex mosquitoes became infected; one Ae. albopictus and 10% of the Ae. aegypti became infected, but the titre was very low and virus did not disseminate to head tissue. ChimeriVax-WN(vet) virus had a replication profile similar to that of the attenuated vaccine virus YF 17D, which is not transmitted by mosquitoes. These results suggest that the natural mosquito vectors of WN and YF viruses, which may incidentally take a bloodmeal from a vaccinated host, will not become infected with ChimeriVax-WN(vet) virus.  相似文献   

7.
RNA elements within flavivirus genomes are potential targets for antiviral therapy. A panel of phosphorodiamidate morpholino oligomers (PMOs), whose sequences are complementary to RNA elements located in the 5'- and 3'-termini of the West Nile (WN) virus genome, were designed to anneal to important cis-acting elements and potentially to inhibit WN infection. A novel Arg-rich peptide was conjugated to each PMO for efficient cellular delivery. These PMOs exhibited various degrees of antiviral activity upon incubation with a WN virus luciferase-replicon-containing cell line. Among them, PMOs targeting the 5'-terminal 20 nucleotides (5'End) or targeting the 3'-terminal element involved in a potential genome cyclizing interaction (3'CSI) exhibited the greatest potency. When cells infected with an epidemic strain of WN virus were treated with the 5'End or 3'CSI PMO, virus titers were reduced by approximately 5 to 6 logs at a 5 muM concentration without apparent cytotoxicity. The 3'CSI PMO also inhibited mosquito-borne flaviviruses other than WN virus, and the antiviral potency correlated with the conservation of the targeted 3'CSI sequences of specific viruses. Mode-of-action analyses showed that the 5'End and 3'CSI PMOs suppressed viral infection through two distinct mechanisms. The 5'End PMO inhibited viral translation, whereas the 3'CSI PMO did not significantly affect viral translation but suppressed RNA replication. The results suggest that antisense PMO-mediated blocking of cis-acting elements of flavivirus genomes can potentially be developed into an anti-flavivirus therapy. In addition, we report that although a full-length WN virus containing a luciferase reporter (engineered at the 3' untranslated region of the genome) is not stable, an early passage of this reporting virus can be used to screen for inhibitors against any step of the virus life cycle.  相似文献   

8.
West Nile (Sarafend) virus [WN(S)V] has been shown to egress by budding at the plasma membrane of infected cells. However, the region influencing this mode of virus release remains to be deciphered. In this study, we have constructed three chimeric clones in which specific regions of West Nile (Wengler) virus [WN(W)V] were replaced for the corresponding regions of WN(S)V in the full-length infectious clone of WN(S)V to define the region responsible for the cis-mode of WN(S)V maturation. The WN(W)V matures by the trans-mode. All of the resulting chimeric viruses were found to be infective. Transmission electron microscopy analyses performed in Vero cells infected with these chimeric viruses disclosed that the 5' end of the WN(S)V genome plays a major role in influencing the process of maturation at the plasma membrane.  相似文献   

9.
《Research in virology》1990,141(5):533-543
The West Nile (WN) virus strains isolated in Bangui, Central African Republic (CAR), from patients with hepatitis were analysed comparatively with the prototype WN virus strain and 7 WN strains previously isolated from birds (2 strains), mosquitoes (3 strains) and ticks (2 strains) in CAR.The comparison was based on two techniques: an epitopic analysis by indirect immunofluorescence assay using a panel of 9 monoclonal antibodies to WN virus, and an analysis of HaeIII and TaqI restriction digest profiles of cDNA to infected cell RNA.Similar results were obtained with both techniques: the 3 human strains were found to be identical to each other and identical or very close to mosquito and tick strains, whereas prototype WN virus and bird strains were significantly different from the human strains.As “classical” infections due to WN virus without hepatic involvement were also reported during the period of isolation of the arthropod strains, we concluded that the same virus subtype may have been the cause of different infection patterns. A new definition of the disease spectrum of WN virus, including the possibility of liver involvement, should be established.Clearly, the Egyptian prototype WN virus represents a different topotype. Bird strains also appear to be different from human and arthropod strains, raising the question of their transmissibility and pathogenicity for man, and of the role of birds in the natural cycle of WN virus.  相似文献   

10.
Abstract Sublethal viral infections can cause changes in the body size and demography of insect vectors, with important consequences for population dynamics and the probability that individual mosquitoes will transmit disease. This study examined the effects of covert (sublethal) infection by Invertebrate iridescent virus 6 (IIV‐6) on the demography of female Aedes aegypti and the relationship between key life history parameters in covertly infected female insects compared with healthy (control) insects or non‐infected mosquitoes that had survived exposure to virus inoculum without becoming infected. Of the female mosquitoes that emerged following exposure to virus inoculum and were offered blood meals, 29% (43/150) proved positive for covert IIV‐6 infection. The net reproductive rate (R0) of covertly infected females was 50% lower for infected females compared to control mosquitoes, whereas non‐infected exposed females had an R0 approximately 15% lower than that of controls. Reproduction caused a significant decrease of about 13 days in mosquito longevity compared to females that did not reproduce (P < 0.001). Infected females lived 5–8 days less than non‐infected exposed females or controls, respectively (P = 0.028). Infected females and non‐infected exposed females both had significantly shorter wings than control insects (P < 0.001). There was a significant positive correlation between wing length and longevity in covertly infected female mosquitoes but not in control or non‐infected exposed mosquitoes. Longer lived females produced more eggs in all treatments. There were no significant correlations between body size and fecundity or the production of offspring. There was also no correlation between fecundity and fertility, suggesting that sperm inactivation was a more likely cause of decreased fertility in older mosquitoes than sperm depletion. We conclude that covert infection by iridescent virus is likely to reduce the vectorial capacity of this mosquito.  相似文献   

11.
Introduction of West Nile (WN) virus into the United States in 1999 created major human and animal health concerns. Currently, no human or veterinary vaccine is available to prevent WN viral infection, and mosquito control is the only practical strategy to combat the spread of disease. Starting with a previously designed eukaryotic expression vector, we constructed a recombinant plasmid (pCBWN) that expressed the WN virus prM and E proteins. A single intramuscular injection of pCBWN DNA induced protective immunity, preventing WN virus infection in mice and horses. Recombinant plasmid-transformed COS-1 cells expressed and secreted high levels of WN virus prM and E proteins into the culture medium. The medium was treated with polyethylene glycol to concentrate proteins. The resultant, containing high-titered recombinant WN virus antigen, proved to be an excellent alternative to the more traditional suckling-mouse brain WN virus antigen used in the immunoglobulin M (IgM) antibody-capture and indirect IgG enzyme-linked immunosorbent assays. This recombinant antigen has great potential to become the antigen of choice and will facilitate the standardization of reagents and implementation of WN virus surveillance in the United States and elsewhere.  相似文献   

12.
West Nile (WN) virus is a mosquito-borne flavivirus that emerged in the United States in 1999 and can cause fatal encephalitis. Envelope (E) protein cDNA from a WN virus isolate recovered from Culex pipiens in Connecticut was expressed in Escherichia coli. The recombinant E protein was purified and used as Ag in immunoblot assays and immunization experiments. Patients with WN virus infection had Abs that recognized the recombinant E protein. C3H/HeN mice immunized with E protein developed E protein Abs and were protected from infection with WN virus. Passive administration of E protein antisera was also sufficient to afford immunity. E protein is a candidate vaccine to prevent WN virus infection.  相似文献   

13.
Cell lines competent to infection by DNA from cultures chronically infected by type C viruses of the simian sarcoma virus and baboon endogenous virus groups were identified. Significant differences were observed in the relative susceptibility of some cell lines to infection by a given proviral DNA. Practical applications of transfection techniques for the separation of viruses from dually infected cultures and to free virus stocks from mycoplasmal contamination are described.  相似文献   

14.
Infection of chicken embryos with West Nile (WN) virus, a group B togavirus containing structural lipids, caused a rapidly developing hypertriglyceridemia. Changes in the activity of several hepatic regulatory enzymes in glycolytic and lipogenic pathways occurred during infection. Compared to control values in embryos of the same age (16 days), an 8.8-fold increase in the specific activity of ATP-citrate lyase and a 5.6-fold increase in that of hexokinase were observed on the third day of WN virus infection. Hexose monophosphate shunt dehydrogenase specific activities were elevated twofold in virus-infected livers. Activities of malic enzyme and phosphofructokinase were also elevated in WN virus-infected livers. Malate dehydrogenase and NADP-linked isocitrate dehydrogenase levels showed little or no change during infection. The levels of pyruvate kinase and lactate dehydrogenase were decreased in virus-infected livers. Hepatic acetyl-CoA carboxylase activity was at least twofold higher in virus-infected embryos; however, following removal of low-molecular-weight compounds, the specific activities of this enzyme from infected and control embryos were virtually identical. The results of mixing experiments suggest that the low levels of carboxylase activity in control embryos may be due to the presence of enzyme inhibitor(s) which can be removed by gel filtration.The incorporation of radiolabeled precursors into cellular lipids by liver minces from virus-infected and uninfected embryos was measured. There was a twofold increase in carbohydrate incorporation in virus-infected liver as compared to uninfected liver; [14C]pyruvic acid was incorporated into lipids to the greatest extent. [1-14C]acetic acid, [U-14C]alanine, and [U-14C]leucine were incorporated very poorly in both infected and control livers. Twice as much [1-14C]oleic acid or [1-14C oleic]triolein was incorporated in WN-infected livers as in control. The relative distribution of neutral and polar lipids formed from each precursor was generally similar in infected and uninfected livers as determined by thin-layer chromatography of radiolabeled lipids. Except for a threefold increase in oxidation of [14C]glucose by virus-infected livers, the oxidations of carbohydrates and fatty acids were similar in infected and uninfected livers. The pentose phosphate pathway appears to be the major pathway utilized in glucose oxidation for both control and virus-infected livers. The results indicate that enhanced flux of metabolites into lipids reflects a virus-induced alteration in embryonic development: The enzyme patterns of infected embryos are more characteristic of older embryos or even newly hatched chicks.  相似文献   

15.
16.
Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in these avian species, especially for species within the order Anseriformes. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is unknown whether H5N1 HPAI viruses can persist in free-living avian populations. In a previous study, we established that wood ducks (Aix sponsa) are highly susceptible to infection with H5N1 HPAI viruses. To quantify this susceptibility and further evaluate the likelihood of H5N1 HPAI viral maintenance in a wild bird population, we determined the concentration of virus required to produce infection in wood ducks. To accomplish this, 25 wood ducks were inoculated intranasally at 12-16 wk of age with decreasing concentrations of a H5N1 HPAI virus (A/Whooper Swan/Mongolia/244/05 [H5N1]). The median infectious dose and the lethal dose of H5N1 HPAI virus in wood ducks were very low (10(0.95) and 10(1.71) median embryo infectious dose [EID(50)]/ml, respectively) and less than that of chickens (10(2.80) and 10(2.80) EID(50)/ml). These results confirm that wood ducks are highly susceptible to infection with H5N1 HPAI virus. The data from this study, combined with what is known experimentally about H5N1 HPAI virus infection in wood ducks and viral persistence in aquatic environments, suggest that the wood duck would represent a sensitive indicator species for H5N1 HPAI. Results also suggest that the potential for decreased transmission efficiency associated with reduced viral shedding (especially from the cloaca) and a loss of environmental fitness (in water), may be offset by the ability of this virus to be transmitted through a very low infectious dose.  相似文献   

17.
Evidence suggests that midgut trypsins in Aedes aegypti condition the mosquito's ability to become infected with the dengue-2 flavivirus (DEN2). The activity of early trypsin protein peaks approximately 3 h after blood feeding and then drops within a few hours. We use association mapping to test the hypothesis that segregating sites in early trypsin condition midgut susceptibility to DEN2 virus. A total of 1642 females from throughout Mexico and the southern US were fed an artificial blood meal containing DEN2. After 2 weeks, mosquito heads and midguts were tested for DEN2. Mosquitoes with an infected head were classified as susceptible, those without a midgut infection had an infection barrier, and those with an infected gut but no head infection had an escape barrier. The early trypsin gene was amplified in two overlapping pieces from each mosquito and analyzed for single strand conformation polymorphisms (SSCPs). Unique SSCP genotypes were sequenced and 90 segregating sites were found. The dataset was divided into the four geographic regions within which Ae. aegypti is panmictic in Mexico. Heterogeneity chi2 analyses between alleles or genotypes and infection phenotypes demonstrated significant associations but allelic and genotypic effects were inconsistent among geographic regions. No consistent associations were found between segregating sites in early trypsin and susceptibility to DEN2 in Ae. aegypti in Mexico.  相似文献   

18.
治疗流行性感冒(简称流感)对年老体弱者有着重要意义。由于流感病毒的一个新亚型出现后,往往要经历十几年至20多年的流行,因此选出具有亚型内共同抗原决定簇的McAb,用于治疗流感是可行的,文献也曾有过报道。前文已报道关于甲3型流感病毒McAb的建立,本文用抗甲3型流感病毒上海/32/84血凝素McAb,与1977年以来分离的甲3型流感  相似文献   

19.
20.
Observations were made on the differences in cell-mediated immune responses in the mice infected with strongly pathogenic Naegleria fowleri ITMAP 359, weakly pathogenic Naegleria jadini 0400, or non-pathogenic Naegleria gruberi EGB, respectively. Variations in cell-mediated responses and changes in antibody titers according to the duration after infection were noted. Infections were done by dropping 5 microliters saline suspension containing 10 x 10(4) trophozoites cultured axenically in the CGVS medium into the right nasal cavity of ICR mice aging about 6-7 weeks, under the anesthesia by intraperitoneal injection of secobarbital. Following infection, delayed type hypersensitivity(DTH) responses in the footpad and blastogenic responses of the mouse spleen cells using [3H]-thymidine were observed on the day 1, 4, 7, 10 and 14 after infection. For the preparation of amoeba lysates, each of cultured trophozoites were homogenized with an ultrasonicator, and centrifugated at 20,000 g. The supernatants of amoeba lysates were used as the mitogen and antigen for ELISA. Concanavalin A(Con. A) and lipopolysaccharide(LPS) were also used as mitogens in the blastogenic response. 1. The mice infected with N. fowleri showed the mortality rate of 75.7%. The rate was 6.2% for the N. jadini infected group, while no dead mouse was observed for N. gruberi infections. 2. In regard to DTH responses in the N. fowleri infected mice, the level increased in comparison to the control group but declined after 7 days. An increase was also noted for the N. jadini group after 1 day, but gradual decreases were observed through the infection period. In addition, no difference was noted between the N. gruberi infected and control groups. 3. Concerning the blastogenic response of the splenocytes, it increased after 10 days in the experimental group of N. fowleri infection, but the differences were not statistically significant compared with control group. It was evident that N. jadini group was not different from control group either, while there was a tendency of decrease in N. gruberi infected group. In regard to the blastogenic response of the splenocytes by LPS, it was found that the N. fowleri, N. jadini and N. gruberi infected groups had no differences from the control group. 4. The serum antibody titer of N. fowleri and N. jadini infected mice increased from the day 7 and 14 after infection respectively, while the N. gruberi infected mice showed no increase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号