首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
To investigate the effect of endogenous proteolysis on the molecular weights of the benzodiazepine binding proteins, brains of trout, chicken, and rat were removed immediately after death and stored at room temperature for various periods of time before they were frozen. Photoaffinity labeling of membranes with [3H]flunitrazepam, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography, revealed proteolytic fragments of 47K in trout, chicken, and rat. The proteolysis set in rapidly after death. Seemingly in parallel with the degradation observed fluorographically, the affinity for [3H]flunitrazepam increased without systematic changes in receptor density. The degradation pattern was not identical to that of the photolabeled trypsinized benzodiazepine binding proteins. The endogenous proteolytic fragments were deglycosylated in two steps. In conclusion, proteolytic effects must be taken into account when interpreting labeling patterns and binding parameters.  相似文献   

2.
The prenatal and postnatal human ontogeny of the central benzodiazepine receptor was investigated in six different brain regions between week 24 postconception and age 14 years. Binding studies, which were performed with [3H]flunitrazepam [( 3H]FNZ), revealed a steep increase in receptor density postnatally in frontal cortex and cerebellum. Bmax values were higher in medulla oblongata, pons, and thalamus than in cortex and cerebellum up to week 26. After that, receptor densities declined significantly in medulla and olive. The same tendency was apparent in pons, whereas receptor density remained unchanged in thalamus. The early ontogeny of the benzodiazepine receptor was also evaluated in fluorographs [( 3H]FNZ) and immunoblots using the alpha 1-subunit-specific monoclonal antibody (mAb) bd-24. Specific radiolabeled proteins with molecular weights of 53K and 59K were visible in cortical membranes from gestational week 8, the earliest time investigated. During further development, the intensity of the 53K band increased without changes in the 59K band. As in other species, postmortem proteolysis in human brain led to a specifically labeled peptide of 47K. The mAb bd-24 immunolabeled only the 53K protein and the 47K peptide.  相似文献   

3.
In the present communication we have investigated the allosteric coupling between the gamma-aminobutyric acidA (GABAA) receptor and the pharmacologically different benzodiazepine (BZD) receptor subtypes in membranes from various rat nervous system regions. Two types of BZD receptors (type I and type II) have been classically defined using CL 218.872. However, using zolpidem, three different BZD receptors have been identified by binding displacement experiments in membranes. These BZD receptor subtypes displayed high, low, and very low affinity for zolpidem. The distribution of the high- and low-affinity binding sites for zolpidem was similar to that of type I and type II subtypes in cerebellum, prefrontal cortex, and adult cerebral cortex. On the other hand, the very-low-affinity binding site was localized in relative high proportion in spinal cord, hippocampus, and newborn cerebral cortex and, to a minor extent, in superior colliculus. The allosteric coupling between the GABAA receptor and the BZD receptor subtypes was different. The high- and low-affinity binding sites for zolpidem seemed to have a similar high degree of coupling, except in spinal cord. On the other hand, the very-low-affinity binding site for zolpidem displayed a low degree of coupling with the GABAA receptor. These results seem to indicate that the different efficacy of GABA in enhancing the [3H]flunitrazepam binding could be due to the different BZD receptor subtypes present in the GABAA/BZD receptor complex and, moreover, led us to speculate that the low GABA efficacy found in membranes from spinal cord, hippocampus, and newborn cerebral cortex might be due to the presence in relatively high proportion of the very-low-affinity binding site for zolpidem.  相似文献   

4.
Subcellular Location and Neuronal Release of Diazepam Binding Inhibitor   总被引:6,自引:0,他引:6  
Diazepam binding inhibitor (DBI), a peptide located in CNS neurons, blocks the binding of benzodiazepines and beta-carbolines to the allosteric modulatory sites of gamma-aminobutyric acid (GABAA) receptors. Subcellular fractionation studies of rat brain indicate that DBI is compartmentalized. DBI-like immunoreactivity is highly enriched in synaptosomes obtained by differential centrifugation in isotonic sucrose followed by a Percoll gradient. In synaptosomal lysate, DBI-like immunoreactivity is primarily associated with synaptic vesicles partially purified by differential centrifugation and continuous sucrose gradient. Depolarization induced by high K+ levels (50 mM) or veratridine (50 microM) released DBI stored in neurons of superfused slices of hypothalamus, hippocampus, striatum, and cerebral cortex. The high K+ level-induced release is Ca2+ dependent, and the release induced by veratridine is blocked by 1.7 microM tetrodotoxin. Depolarization released GABA and Met5-enkephalin-Arg6-Phe7 together with DBI. DBI is also released by veratridine depolarization, in a tetrodotoxin-sensitive fashion, from primary cultures of cerebral cortical neurons, but not from cortical astrocytes. Depolarization fails to release DBI from slices of liver and other peripheral organs. These data support the view that DBI may be released as a putative neuromodulatory substance from rat brain neurons.  相似文献   

5.
The mechanism by which ethanol affects the gamma-aminobutyric acid (GABA)/benzodiazepine complex is not clear. It is known that ethanol enhances the Cl- influx mediated by the GABAA receptor complex, and although chronic ethanol administration does not change the KD or Bmax for [3H]flunitrazepam binding, some reports have suggested that it could modify the modulation of benzodiazepine binding produced by GABA. In the present work, we studied the effect of chronic ethanol treatment on the modulation by GABA of [3H]flunitrazepam binding, using light microscopic autoradiography. This technique allows the measurement of densities of benzodiazepine receptors in different brain areas, the visual cortex and hippocampus, which appear to constitute the anatomical support for the behavioral and physiological responses affected by ethanol. We found enhancement of benzodiazepine binding by GABA at concentrations of greater than 10(-6) M for the various cortical and hippocampal areas studied from both control and ethanol-treated animals; this enhancement peaked at 10(-4) M GABA but decreased at 10(-3) M GABA. We found a clear effect of ethanol treatment on the modulatory properties of GABAA receptor, in both cortex and hippocampus, although only in cortex were the differences statistically significant between control and ethanol-treated animals.  相似文献   

6.
An impermeant benzodiazepine receptor ligand was prepared by derivatization of the aminobenzodiazepine 1012-S with 4-sulfophenylisothiocyanate. The resulting N-(4-sulfophenyl)-thiocarbamoyl derivative of 1012-S (SPTC-1012S) was purified by reverse-phase HPLC, and the predicted structure was verified by mass spectrometry. The apparent affinity of SPTC-1012S (IC50 = 9.8 +/- 2.9 nM) for displacement of [3H]flunitrazepam from intact chick cortical neurons was similar to that of 1012-S (IC50 = 4.0 +/- 0.3 nM). However, at concentrations from 0.1 to 10 microM, 1012-S was consistently more efficacious than SPTC-1012S, a finding indicating that 6-8% of the benzodiazepine receptor pool was not accessible to the impermeant compound. This inaccessible pool was eliminated by permeabilization of the cells with saponin or Triton X-100, a result suggesting that approximately 7% of neuronal benzodiazepine receptors are intracellular. Acute treatment (1-4 h at 37 degrees C) of neurons with 100 microM gamma-aminobutyric acid (GABA) or 100 nM clonazepam had little effect on the level of [3H]flunitrazepam binding but increased the proportion of intracellular receptors by 61 and 74%, respectively, compared with untreated controls. Similar treatment with 1 mM GABA increased the level of intracellular sites by 154-176%. The effect of GABA on receptor internalization was blocked by cotreatment with the GABAA receptor antagonist R 5135. The results suggest that SPTC-1012S can be used as a probe to study the internalization of the GABAA/benzodiazepine receptor complex under normal conditions or following acute or chronic treatment with agonists.  相似文献   

7.
We have solubilized, affinity-purified, and functionally reconstituted the gamma-aminobutyric acid/benzodiazepine (GABA/BDZ) receptor from rat brain into natural brain lipid liposomes. The detergent, 3-[(3-cholamidopropyl)-dimethylammonio] 1-propanesulphonate, was employed for the isolation of the receptor in the presence of a whole rat brain lipid extract supplemented with cholesteryl hemisuccinate. The soluble and reconstituted protein showed a homogeneous [3H]flunitrazepam binding population and the allosteric modulation of this binding site by GABA, by the pyrazolopyridine, cartazolate, and by the depressant barbiturate, pentobarbital. The purified GABA/BDZ receptor when incorporated into liposomes has been visualized by electron microscopy and reveals rosette structures, 8-9 nm in diameter, which appear to have a central pore. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the reconstituted GABA/BDZ receptor reveals three major protein bands of 41, 52-56, and 59-62 kDa, the latter two of which appears as doublets. Functional receptor reconstitution is demonstrated by the measurement of GABA-stimulated 36Cl- flux into the purified GABA/BDZ receptor incorporated liposomes and its modulation by the BDZs, barbiturates, and pyrazolopyridines.  相似文献   

8.
The binding of the triazolopyridazine CL 218,872 to central benzodiazepine receptors identified with [3H]Ro 15-1788 was studied in extensively washed homogenates of rat spinal cord and cerebral cortex. CL 218,872 displacement curves were shallow in both spinal cord (nH = 0.67) and cortex (nH = 0.54), suggesting the presence of type 1 and type 2 benzodiazepine receptors in both tissues. CL 218,872 had lower affinity in spinal cord (IC50 = 825 nM) than cortex (IC50 = 152 nM), possibly reflecting the presence of fewer type 1 sites in the cord. Activating gamma-aminobutyric acid (GABA) receptors with 10 microM muscimol resulted in a two- to threefold increase in CL 218,872 affinity in both tissues without changes in the displacement curve slope. This indicates that GABA enhances CL 218,872 affinity for both type 1 and type 2 sites in both spinal cord and cerebral cortex.  相似文献   

9.
The specific binding of [N-methyl-3H]flunitrazepam ([3H]FNZP) to a membrane fraction from the supraoesophageal ganglion of the locust (Schistocerca gregaria) has been measured. The ligand binds reversibly with a KD of 47 nM. The binding is Ca2+-dependent, a property not found for the equivalent binding site in vertebrate brain. The pharmacological characteristics of the locust binding site show similarities to both central and peripheral benzodiazepine receptors in mammals. Thus binding is enhanced by gamma-aminobutyric acid (GABA), a feature of mammalian central receptors, whereas the ligand Ro 5-4864 was more effective in displacing [3H]FNZP than was clonazepam, which is the pattern seen in mammalian peripheral receptors. The locust benzodiazepine binding site was photoaffinity-labelled by [3H]FNZP, and two major proteins of Mr 45K and 59K were specifically labelled. In parallel experiments with rat brain membranes a single major protein of Mr 49K was labelled, a finding in keeping with many reports in the literature. We suggest that the FNZP binding site described here is part of the GABA receptor complex of locust ganglia. The insect receptor appears to have the same general organization as its mammalian counterpart but differs significantly in its detailed properties.  相似文献   

10.
We have solubilised the gamma-aminobutyric acid/benzodiazepine (GABA/BDZ) receptor from rat cerebellum using 3-[(3-cholamidopropyl)dimethylammonio] 1-propane sulphonate (CHAPS) in the presence of a natural brain lipid extract and cholesteryl hemisuccinate. The soluble material shows a homogeneous [3H]flunitrazepam ([3H]FNZ) binding population with an equilibrium dissociation constant (KD) of 4.4 +/- 0.2 nM compared to a KD of 2.3 +/- 0.2 nM in cerebellar synaptosomal membranes. The receptor complex in solution retains the characteristic facilitation of [3H]flunitrazepam binding induced by GABA, the pyrazolopyridine cartazolate, and the depressant barbiturate pentobarbital to the same extent as that observed in synaptosomal membranes. Furthermore, these responses are retained both quantitatively and qualitatively when this preparation is stored for 48 h at 4 degrees C. This is contrary to the results obtained with a CHAPS-soluble preparation including asolectin in which these responses are anomalous and extremely labile on storage.  相似文献   

11.
The effect of treatments with various enzymes and chemically modifying agents on [3H]muscimol binding to a purified gamma-aminobutyric acid (GABA)/benzodiazepine receptor complex from the bovine cerebral cortex was examined. Treatments with pronase, trypsin, guanidine hydrochloride, and urea significantly decreased the binding of [3H]muscimol, but dithiothreitol, N-ethylmaleimide, reduced glutathione, oxidized glutathione, cysteine, and cystine had no significant effect. These results indicate that the GABA receptor indeed consists of protein, but -SH and -S-S- groups in the protein are not involved in the exhibition of the binding activity. On the other hand, column chromatography using concanavalin A-Sepharose eluted protein having [3H]muscimol binding activity and staining of glycoprotein using an electrophoresed slab gel indicated the existence of two bands originating from the subunits of the GABA/benzodiazepine receptor complex. Furthermore, treatments with various glycosidases such as glycopeptidase A, beta-galactosidase, and alpha-mannosidase significantly increased the binding of [3H]muscimol. These results strongly suggest that GABA/benzodiazepine receptor complex is a glycoprotein and that its carbohydrate chain may be a hybrid type. Treatment with beta-galactosidase resulted in the disappearance of the low-affinity site for [3H]muscimol binding and in an increase of Bmax of the high-affinity site, without changing the KD value. These results suggest that the carbohydrate chain in the receptor complex may have a role in exhibiting the low-affinity binding site for GABA. The observation that the enhancement of [3H]muscimol binding by treatments with beta-galactosidase and glycopeptidase A were much higher than that with alpha-mannosidase may also indicate a special importance of the beta-galactosyl residue in the inhibition of GABA receptor binding activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Abstract Octylglucopyranoside (OCTG) was three times more efficient than 3-[(3-cholamidopropyl)-dimethylammonio] 1-propanesulfonate (CHAPS) in solubilizing the benzodiazepine (BDZ)/γ-aminobutyric acid (GABA) receptor complex from rat cerebellar synaptic membranes. OCTG-solubilized receptor preparations had ligand binding characteristics that were significantly different from those of the CHAPS-solubilized receptors. The inclusion of phospholipids in the solubilization media improved the binding characteristics of both soluble receptor preparations and appeared absolutely necessary for the maintenance of chloride facilitation of flunitrazepam (FNZ) binding to OCTG-solubilized receptors. FNZ and ethyl-β-carboline-3-carboxylate bound to OCTG-solubilized preparations with equilibrium dissociation constants of 2.2 nM and 1.6 nM, respectively, and chloride (150 mM) and GABA (100 μM) + chloride facilitated the binding of FNZ by 15% and 55%, respectively; these ligand binding characteristics are similar to those of membrane-located BDZ receptors. Cartazolate, a pyrazolopyridine that facilitated the binding of FNZ to membrane-located and CHAPS-solubilized receptors, did not facilitate FNZ binding to OCTG-solubilized receptors. These results are discussed in terms of an interaction between the membrane lipid phosphatidylserine (PS) and cartazolate; PS appears to have the capacity to inhibit the effects of cartazolate on FNZ binding. Storage of the soluble receptor preparations for 24 h at 4° resulted in the loss of several characteristic BDZ receptor binding properties. Incorporation of the OCTG-solubilized receptor complex into liposomes prevented these losses but this procedure did not protect the CHAPS-solubilized receptors. We conclude that OCTG may have some advantages over CHAPS as the detergent of choice for the solubilization and reconstitution in liposomes of a functional BDZ/GABA receptor-chloride ionophore complex.  相似文献   

13.
The binding of [3H]diazepam and [3H]3-carboethoxy-beta-carboline was examined in rat brain synaptosomal membranes treated with irazepine, an alkylating benzodiazepine. Under incubation conditions that resulted in a 25-33% reduction in the Bmax of [3H]diazepam binding, only modest (less than 8.5%) reductions in the Bmax of [3H]3-carboethoxy-beta-carboline were observed. The differential effects of irazepine on the binding of these two compounds may be explained by the presence of multiple areas or "domains" on the benzodiazepine receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号