首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: Mercury compounds are highly toxic to all types of living cells. Isolated yeast strains of Rhodotorula rubra showed high and low resistance pattern towards mercury and organomercurial compounds. To investigate the basis of differential sensitivity of these two types of strains, glucose utilization was measured in the presence of mercury compounds. METHODS AND RESULTS: Glucose utilization process remained unaffected in resting cells of highly Hg(2+)-resistant strain in the presence of HgCl(2) but not in the presence of phenylmercuric acetate and thimerosal. However, HgCl(2) significantly affected glucose utilization in the case of low-resistant cells. The Hg-retaining ability of the cell wall of highly Hg(2+)-resistant yeast strain was greater than that of the weakly Hg(2+)-resistant strain. The spheroplast-bound Hg(2+) was also significantly less in the highly Hg(2+)-resistant strain than in the weakly Hg(2+)-resistant strain. CONCLUSIONS: Glucose uptake machinery was not affected in the presence of toxic metal ions in the case of high-resistant strains. But in the case of low Hg(2+)-resistant strain, glucose transport system may be affected either by inactivation of sensor proteins containing -SH group associated with glucose uptake. SIGNIFICANCE AND IMPACT OF THE STUDY: Cell wall of mercury-resistant yeast cells may play an important role in heavy metal bioremediation process.  相似文献   

2.
The role of mer(Tn21) in the adaptation of aquatic microbial communities to Hg2+ was investigated. Elemental mercury was the sole product of Hg2+ volatilization by freshwater and saline water microbial communities. Bacterial activity was responsible for biotransformation because most microeucaryotes did not survive the exposure conditions, and removal of larger microbes (greater than 1 micromole) from adapted communities did not significantly (P greater than 0.01) reduce Hg2+ volatilization rates. DNA sequences homologous to mer(Tn21) were found in 50% of Hg2+-resistant bacterial strains representing two freshwater communities, but in only 12% of strains representing two saline communities (the difference was highly significant; P less than 0.001). Thus, mer(Tn21) played a significant role in Hg2+ resistance among strains isolated from fresh waters, in which microbial activity had a limited role in Hg2+ volatilization. In saline water environments in which microbially mediated volatilization was the major mechanism of Hg2+ loss, other bacterial genes coded for this biotransformation.  相似文献   

3.
T Barkay  C Liebert    M Gillman 《Applied microbiology》1989,55(5):1196-1202
The role of mer(Tn21) in the adaptation of aquatic microbial communities to Hg2+ was investigated. Elemental mercury was the sole product of Hg2+ volatilization by freshwater and saline water microbial communities. Bacterial activity was responsible for biotransformation because most microeucaryotes did not survive the exposure conditions, and removal of larger microbes (greater than 1 micromole) from adapted communities did not significantly (P greater than 0.01) reduce Hg2+ volatilization rates. DNA sequences homologous to mer(Tn21) were found in 50% of Hg2+-resistant bacterial strains representing two freshwater communities, but in only 12% of strains representing two saline communities (the difference was highly significant; P less than 0.001). Thus, mer(Tn21) played a significant role in Hg2+ resistance among strains isolated from fresh waters, in which microbial activity had a limited role in Hg2+ volatilization. In saline water environments in which microbially mediated volatilization was the major mechanism of Hg2+ loss, other bacterial genes coded for this biotransformation.  相似文献   

4.
Morphological mutants of Micrococcus lysodeikticus (luteus) were isolated by treatment with N-methyl-N'-nitro-N-nitrosoguanidine. They occurred on plates in large, regular cell packets, whereas the parent cells usually grew as groups of two or four cells or as short chains. The mutants required a much higher concentration of Mg2+ for growth than the parent cells. The concentrations of Mg2+ and other components of the culture medium tested did not significantly affect the morphology of either the parent or mutant strains. The mutant strains were not agglutinated by antiserum to M. lysodeikticus, which mainly interacts with teichuronic acid on the cell surface, and chemical analysis of isolated cell walls of the mutants indicated the absence of teichuronic aicd. No significant differences were detected between the parent and mutant strains in the amounts of other cell wall components, e.g., peptidoglycan, protein, and teichoic acid. They possible roles of teichuronic acid in cell separation and attachment of divalent cations are discussed.  相似文献   

5.
Ultraviolet irradiation or nitrosoguanidine treatment of Escherichia coli K-12 strain JE3100 (F'(8)/fla pil) led to the isolation of six mutants defective in F pili function. The defects were shown to be caused by mutations in the F factor. The mutants retained conjugal fertility, although they were less efficient than parental F'(8) strain, and continued to synthesize F pili. Three of the mutants (strains KE196, 198, and 200) had lost sensitivity to male-specific MS2 phage, and the other three (strains KE161, 163, and 164) were insensitive to Qbeta and f1 as well as MS2 phages. F pili on strains KE196, 198, and 200 cells continued to adsorb MS2 phage, whereas those of strains KE161, 163, and 164 did not adsorb MS2 phage. The correlation of the mutant phenotypes with those of other F mutants reported in the literature is discussed.  相似文献   

6.
tolA mutants of Escherichia coli K-12 release periplasmic proteins into the extracellular medium; they are sensitive to growth inhibitors such as cholic acid and tolerant to group A colicins and filamentous bacteriophage. Suppressor mutants of the tolA-876 allele were isolated by selecting for cholic acid resistant clones that did not release periplasmic ribonuclease I. One class of tolA suppressor strains carried mutations in the staA gene (for suppressor of tolA) located a 41 min. tolA-876 staA strains partially recovered a wild-type phenotype: they exported alkaline phosphatase and beta-lactamase into the periplasm and only released very low amounts of periplasmic proteins; moreover, they were sensitive to E1 and A colicins and more resistant than tolA-876 staA+ strains to various growth inhibitors. Furthermore, tolA-876 staA-2 and tolA+staA-2 mutants were 10- to 2700-times more resistant than staA+ strains to bacteriophages TuIa, TuIb and T4, and TuII whose receptors are major outer membrane proteins OmpF, OmpC and OmpA, respectively. SDS-PAGE analysis suggested that cell envelopes of staA or staA+ strains contained similar amounts of these proteins but characterization of strains carrying ompF (or C or A)-phoA gene fusions showed that mutation stA-2 reduced ompF gene expression by a factor of two. Analysis of double mutants strains carrying mutation staA-2 and a tolA, tolB, excC or excD periplasmic-leaky mutation showed that staA suppression was allele specific which suggested that proteins TolA and StaA might directly interact.  相似文献   

7.
Mercury volatilization (Hg2+ reductase) activity has been found with Hg2+-resistant isolates of three Streptomyces species and with three Hg2+-resistant strains of group B Streptococcus from clinical sources in Japan. Hg2+ reductase activities in crude cell extracts showed the temperature sensitivity, the requirement for an added thiol compound and the characteristic dependence on NAD(P)H cofactors of similar enzymes isolated from other bacteria.  相似文献   

8.
Stable mutants resistant to an anticancer antibiotic, bleomycin-A2, were selected in Chinese hamster ovary (CHO) cell either spontaneously or after ethylmethane sulfonate mutagenesis. Fluctuation analysis showed that bleomycin resistance occurs in CHO at a rate of 6.50--6.58 x 10(-7) mutations per cell per generation. Bleomycin-A2-resistant cell lines exhibited increased resistance to bleomycin analogs--bleomycin-A5, -B2, -B4, and pepleomycin. Colchicine, mitomycin C, and ultraviolet light irradiation inhibited colony formation equally in CHO cells and in bleomycin-resistant mutants. Cell-cell hybridization tests showed that bleomycin-resistance behaves as a dominant trait. Bleomycin-inactivating activity in the mutant cell extracts was three to fourfold higher than that in extracts of the parental CHO cell.  相似文献   

9.
Saccharomyces cerevisiae MATa cells carrying mutations in either sst1 or sst2 are supersensitive to the G1 arrest induced by alpha factor pheromone. When sst1 mutants were mixed with normal SST+ cells, the entire population recovered together from alpha factor arrest, suggesting that SST+ cells helped sst1 mutants to recover. Complementation tests and linkage analysis showed that sst1 and bar1, a mutation which eliminates the ability of MATa cells to act as a "barrier" to the diffusion of alpha factor, were lesions in the same genes. These findings suggest that sst1 mutants, are defective in recovery from alpha factor arrest because they are unable to degrade the pheromone. In contrast, recovery of sst2 mutants was not potentiated by the presence of SST+ cells in mixing experiments. When either normal MATa cells or mutant cells carrying defects in sst1 or sst2 were exposed to alpha factor for 1 h and then washed free of the pheromone, the sst2 cells subsequently remained arrested in the absence of alpha factor for a much longer time than SST+ or sst1 cells. These observations suggest that the defect in sst2 mutants is intrinsic to the cell and is involved in the mechanism of alpha factor action at some step after the initial interaction of the pheromone with the cell. The presence of an sst2 mutation appears to cause a growth debility, since repeated serial subculture of haploid sst2-1 strains led to the accumulation of faster-growing revertants that were pheromone resistant and were mating defective ("sterile").  相似文献   

10.
A collection of transposon-mutagenized strains of Yarrowia lipolytica was screened for wall defects by determination of their sensitivity to calcofluor white. A number of strains were hypersensitive, whereas others were resistant. Different non-allelic mutants displayed increased sensitivity to autolysis and lytic enzymes, independently of whether they were sensitive or resistant to calcofluor white. A thorough analysis of their cell walls revealed minor quantitative alterations, and no significant changes in chitin content. Electrophoretic analysis of wall-bound and excreted proteins proved to be a sensitive method that revealed defects in the cell wall structure of the mutants. Important alterations in the patterns of the wall proteins extracted by SDS or by enzymatic treatments were noticed for the mutants, as compared to the parental strain. Mutants released to the growth medium a larger number of protein species than the parental strain, suggesting impairment in wall assembly of certain polypeptides. Patterns of wall-bound and excreted proteins, as well as alterations in wall chemical composition were not diagnostic of calcofluor white sensitivity or resistance, but were specific for each mutant. Our data show that an increase in either sensitivity or resistance of Y. lipolytica to certain levels of calcofluor is equally indicative of alterations in cell wall structure, independent of chitin levels. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
We have isolated and characterized six chemically induced mutants of the filamentous fungusAspergillus nidulans that are resistant to the experimental fungicide 8-chloro-4-(2-chloro-4-fluoro-phenoxy)quinoline (LY214352). The mutants are 13- to 430-fold more resistant to LY214352 than the parental strain, and one of the mutant strains requires LY214352 for maximal growth. The resistance trait is governed by a single dominant or partially dominant gene in each mutant, and it is likely that all of the mutations are allelic. The LY214352-resistant mutants were not cross-resistant to other compounds that inhibit the growth ofA. nidulans. The implications of these findings on the potential for development of resistance to LY214352 are discussed.  相似文献   

12.
Cellular vanadium metabolism was studied in Saccharomyces cerevisiae by isolating and characterizing vanadate [VO4(3-), V(V)]-resistant mutants. Vanadate growth inhibition was reversed by the removal of the vanadate from the medium, and vanadate resistance was found to be a recessive trait. Vanadate-resistant mutants isolated from glucose-grown cells were divided into five complementation classes containing more than one mutant. Among the vanadate-resistant mutants isolated in maltose medium, the majority of mutants were found in only two complementation groups. Three of the classes of vanadate-resistant mutants were resistant to 2.5 mM vanadate but sensitive to 5.0 mM vanadate in liquid media. Two classes of vanadate-resistant mutants were resistant to growth in media containing up to 5.0 mM vanadate. Electron spin resonance studies showed that representative strains of the vanadate-resistant complementation classes contained more cell-associated vanadyl [VO2+, V(IV)] than the parental strains. 51 Vanadium nuclear magnetic resonance studies showed that one of the vanadate resonances previously associated with cell toxicity (G. R. Willsky, D. A. White, and B. C. McCabe, J. Biol. Chem. 259:13273-132812, 1984) did not accumulate in the resistant strains compared with the sensitive strain. The amount of vanadate remaining in the media after growth was larger for the sensitive strain than for the vanadate-resistant strains. All of the strains were able to accumulate phosphate, vanadate, and vanadyl.  相似文献   

13.
Adenine requiring mutants of Serratia marcescens SM-6-F'lac+ have been found to grow well in minimal-glucose medium solely supplemented with cAMP. From one of these ade strains double mutants (called ade cpd) were isolated which could no longer utilize cAMP but which still grew on 5'AMP. Dialyzed cell extracts (soluble fraction) of the double mutants, assayed for cAMP phosphodiesterase, were unable to hydrolyze cAMP whereas cell extracts of the parental strains yielded 5'AMP at a rate of 1.6-2.0 mumoles min-1 mg-1 protein. The loss of the phosphodiesterase activity in S. marcescens cpd W 1181 did not cause an accumulation of large amounts of cAMP as was found for the diesterase-negative mutant AB257pc-1 of Escherichia coli. The induced synthesis of beta-galactosidase in mutant cpd W 1181 showed about the same sensitivity to transient and permanent catabolite (glucose) repression as the corresponding cpd+ strain. Starting from S. marcescens cpd W 1182 three independent double mutants (called cpd cya) were isolated which required exogenous cAMP for utilizing various carbohydrates as carbon source, for motility and for the formation of extracellular lipase and the red pigment prodigiosine. The intracellular concentration of cAMP in these mutants, grown in nutrient broth, was 40-60% of that of the parental strain which is about 4 x 10(-4) M. However, the adenylate cyclase in cell extracts of the mutants W 1237 and W 1270 was like that of the corresponding cya+ strain (about 2 x 10(-2) mumoles min-1 mg-1 protein).  相似文献   

14.
Silver-resistant mutants were selected by stepwise exposure of silver-susceptible clinical strains of Escherichia coli, two of which did not contain any plasmids, to either silver nitrate or silver sulfadiazine. These mutants showed complete cross-resistance to both compounds. They showed low-level cross-resistance to cephalosporins and HgCl2 but not to other heavy metals. The Ag-resistant mutants had decreased outer membrane (OM) permeability to cephalosporins, and all five resistant mutants tested were deficient in major porins, either OmpF or OmpF plus OmpC. However, the well-studied OmpF- and/or OmpC-deficient mutants of laboratory strains K-12 and B/r were not resistant to either silver compound. Resistant strains accumulated up to fourfold less (110m)AgNO3 than the parental strains. The treatment of cells with carbonyl cyanide m-chlorophenylhydrazone increased Ag accumulation in Ag-susceptible and -resistant strains, suggesting that even the wild-type Ag-susceptible strains had an endogenous Ag efflux activity, which occurred at higher levels in Ag-resistant mutants. The addition of glucose as an energy source to starved cells activated the efflux of Ag. The results suggest that active efflux, presumably coded by a chromosomal gene(s), may play a major role in silver resistance, which is likely to be enhanced synergistically by decreases in OM permeability.  相似文献   

15.
16.
The cell wall of Candida albicans lies at the crossroads of pathogenicity and therapeutics. It contributes to pathogenicity through adherence and invasion; it is the target of both chemical and immunological antifungal strategies. We have initiated a dissection of cell wall function through targeted insertional mutagenesis of cell wall-related genes. Among 25 such genes, we were unable to generate homozygous mutations in 4, and they may be essential for viability. We created homozygous mutations in the remaining 21 genes. Insertion mutations in SUN41, Orf19.5412, Orf19.1277, MSB2, Orf19.3869, and WSC1 caused hypersensitivity to the cell wall inhibitor caspofungin, while two different ecm33 insertions caused mild caspofungin resistance. Insertion mutations in SUN41 and Orf19.5412 caused biofilm defects. Through analysis of homozygous sun41Delta/sun41Delta deletion mutants and sun41Delta/sun41Delta+pSUN41-complemented strains, we verified that Sun41 is required for biofilm formation and normal caspofungin tolerance. The sun41Delta/sun41Delta mutant had altered expression of four cell wall damage response genes, thus suggesting that it suffers a cell wall structural defect. Sun41 is required for inducing disease, because the mutant was severely attenuated in mouse models of disseminated and oropharyngeal candidiasis. Although the mutant produced aberrant hyphae, it had no defect in damaging endothelial or epithelial cells, unlike many other hypha-defective mutants. We suggest that the sun41Delta/sun41Delta cell wall defect is the primary cause of its attenuated virulence. As a small fungal surface protein with predicted glucosidase activity, Sun41 represents a promising therapeutic target.  相似文献   

17.
Lysogenization of nonlysogenic strains of Staphylococcus aureus was performed with two different bacteriophages, LS1 and LS2, that were unable to plaque on any of the strains of S. aureus tested. Infection of recipient strains was achieved when protoplasts were inoculated with LS1 or LS2 or when bacterial cultures were simultaneously inoculated with a virulent phage together with LS1 or LS2. Lysogenization was demonstrated by changes in phenotypic characters of the host strain and by liberation of bacteriophages from the modified strains as shown by electron microscopic examination. The lysogenic strains differed from the host strains by the following characters: they were coagulase, deoxyribonuclease, and lipase negative; they were untypable by the basic set of phages; they did not ferment mannitol under anaerobic conditions; and they produced only l-(+)-lactic acid by glucose fermentation. Their cell walls contained less glycine and concomitantly more serine than those of the host strains. Furthermore, they were devoid of protein A. Conversely, some antigenic factors as well as the presence of ribitol in the cell wall teichoic acid, indicated a parental relationship between the host strains and the derived lysogenic ones. Phages LS1 and LS2 could be excluded from the lysogenic strains by invading phages, and the revertant nonlysogenic strains recovered all of the characteristics of the initial host strains. It was thus concluded that the phenomenon described was due to lysogenic conversion. The origin of phages LS1 and LS2 is discussed.  相似文献   

18.
Formation of Methyl Mercury by Bacteria   总被引:2,自引:0,他引:2       下载免费PDF全文
Twenty-three Hg2+-resistant cultures were isolated from sediment of the Savannah River in Georgia; of these, 14 were gram-negative short rods belonging to the genera Escherichia and Enterobacter, six were gram-positive cocci (three Staphylococcus sp. and three Streptococcus sp.) and three were Bacillus sp. All the Escherichia, Enterobacter, and the Bacillus strain were more resistant to Hg2+ than the strains of staphylococci and streptococci. Adaptation using serial dilutions and concentration gradient agar plate techniques showed that it was possible to select a Hg2+-resistant strain from a parent culture identified as Enterobacter aerogenes. This culture resisted 1,200 mug of Hg2+ per ml of medium and produced methyl mercury from HgCl2, but was unable to convert Hg2+ to volatile elemental mercury (Hg0). Under constant aeration (i.e., submerged culture), slightly more methyl mercury was formed than in the absence of aeration. Production of methyl mercury was cyclic in nature and slightly decreased if DL-homocysteine was present in media, but increased with methylcobalamine. It is concluded that the bacterial production of methyl mercury may be a means of resistance and detoxification against mercurials in which inorganic Hg2+ is converted to organic form and secreted into the environment.  相似文献   

19.
Mutations in the hisT gene of Salmonella typhimurium alter pseudouridine synthetase I, the enzyme that modifies two uridines in the anticodon loop of numerous transfer ribonucleic acid species. We have examined two strains carrying different hisT mutations for their ability to grow on a variety of nitrogen sources. The hisT mutants grew more rapidly than did hisT+ strains with either arginine or proline as the nitrogen source and glucose as the carbon source. The hisT mutations were transduced into new strains to show that these growth properties were due to the hisT mutations. The hisT mutations did not influence the growth of mutants having altered glutamine synthetase regulation. Assays of the three primary ammonia-assimilatory enzymes, glutamate dehydrogenase, glutamine synthetase, and glutamate synthase, showed that glutamate synthase activities were lower in hisT mutants than in isogenic hisT+ controls; however, the glutamate dehydrogenase activity was about threefold higher in the hisT strains grown in glucose-arginine medium. The results suggest that the controls for enzyme synthesis for nitrogen utilization respond either directly or indirectly to transfer ribonucleic acid species affected by the hisT mutation.  相似文献   

20.
Both the probability of a mutation occurring and the ability of the mutant to persist will influence the distribution of mutants that arise in a population. We studied the interaction of these factors for the in vitro selection of rifampicin (RIF)-resistant mutants of Mycobacterium tuberculosis. We characterised two series of spontaneous RIF-resistant in vitro mutants from isoniazid (INH)-sensitive and -resistant laboratory strains and clinical isolates, representing various M. tuberculosis genotypes. The first series were selected from multiple parallel 1 ml cultures and the second from single 10 ml cultures. RIF-resistant mutants were screened by Multiplex Ligation-dependent Probe Amplification (MLPA) or by sequencing the rpoB gene. For all strains the mutation rate for RIF resistance was determined with a fluctuation assay. The most striking observation was a shift towards rpoB-S531L (TCG→TTG) mutations in a panel of laboratory-generated INH-resistant mutants selected from the 10-ml cultures (p<0.001). All tested strains showed similar mutation rates (1.33×10−8 to 2.49×10−7) except one of the laboratory-generated INH mutants with a mutation rate measured at 5.71×10−7, more than 10 times higher than that of the INH susceptible parental strain (5.46–7.44×10−8). No significant, systematic difference in the spectrum of rpoB-mutations between strains of different genotypes was observed. The dramatic shift towards rpoB-S531L in our INH-resistant laboratory mutants suggests that the relative fitness of resistant mutants can dramatically impact the distribution of (subsequent) mutations that accumulate in a M. tuberculosis population, at least in vitro. We conclude that, against specific genetic backgrounds, certain resistance mutations are particularly likely to spread. Molecular screening for these (combinations of) mutations in clinical isolates could rapidly identify these particular pathogenic strains. We therefore recommend that isolates are screened for the distribution of resistance mutations, especially in regions that are highly endemic for (multi)drug resistant tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号