首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ciliary neurotrophic factor (CNTF) displays neurotrophic activities on motor neurons and neural cell populations both in vivo and in vitro. On target cells lacking intrinsic expression of specific receptor alpha subunits cytokines of the IL-6 family only act in the presence of their specific agonistic soluble receptors. Here, we report the construction and expression of a CNTF/soluble CNTF-receptor (sCNTF-R) fusion protein (Hyper-CNTF) with enhanced biological activity on cells expressing gp130 and leukemia inhibitory factor receptor (LIF-R), but not membrane-bound CNTF-R. At the cDNA level, the C-terminus of the extracellular domain of human CNTF-R (amino acids 1-346) was linked via a single glycine residue to the N-terminus of human CNTF (amino acids 1-186). Recombinant Hyper-CNTF protein was expressed in COS-7 cells. Hyper-CNTF efficiently induced dose-dependent STAT3 phosphorylation and proliferation of BAF-3 cells stably transfected with gp130 and LIF-R cDNAs. While on BAF3/gp130/LIF-R cells, Hyper-CNTF and LIF exhibited similar biological responses, the activity of Hyper-CNTF on pheochromocytoma cells (PC12 cells) was quite distinct from that of LIF. In contrast to LIF, Hyper-CNTF stimulated neurite outgrowth of PC12 cells in a time- and dose-dependent manner correlating with the ability to phosphorylate MAP kinases. These data indicate that although LIF and Hyper-CNTF use the same heterodimeric receptor complex of gp130 and LIFR, only Hyper-CNTF induces neuronal differentiation. The therapeutic potential of Hyper-CNTF as a superagonistic neurotrophin is discussed.  相似文献   

2.
3.

Introduction

Brain-derived neurotrophic factor (BDNF) was first identified in the intervertebral disc (IVD) when its molecular upregulation was observed in sections of nucleus pulposus cultured under conditions of increased osmolarity. BDNF is now known to be involved in a number of biologic functions, including regulation of differentiation/survival of sensory neurons, regulation of nociceptive function and central pain modulation, and modulation of inflammatory pain hypersensitivity. In addition, more recent investigations show that BDNF can induce the recruitment of endothelial cells and the formation of vascular structures. The objectives of the present study were to use immunocytochemistry to determine the distribution of BDNF and its receptor (BDNF-tropomyosine receptor kinase B) in the human IVD, and to test for gene expression of BDNF and its receptor in cultured human annulus fibrosus cells.

Methods

We studied immunohistochemical localization of BDNF and its receptor in the human annulus, quantified the percentage of outer annulus and inner annulus cells and nucleus cells positive for BDNF immunolocalization, and studied the gene expression of BDNF and its receptor using microarray analysis.

Results

The percentage (mean ± standard error of the mean) of cells positive for BDNF localization was significantly greater in the outer annulus (32.3 ± 2.7%, n = 22) compared with either the inner annulus (8.1 ± 1.5%, n = 6) or the nucleus (10.4 ± 2.8%, n = 3) (P < 0.0001). BDNF-receptor immunolocalization showed a pattern similar to that of BDNF, but was not quantitatively assessed. BDNF gene expression levels from cultured annulus cells showed a significant positive correlation with increasing levels of IVD degeneration (P = 0.011).

Conclusion

These findings provide data on the presence of BDNF and its receptor in the human IVD at the translational level, and on the expression of BDNF and its receptor by cultured human annulus cells. Our findings point to the need for further studies to define the role of BDNF in the human IVD and to investigate regulatory events within the disc that control the expression of BDNF and its receptor.  相似文献   

4.
Ciliary neurotrophic factor (CNTF), originally identified for its ability to promote survival of neurons of the ciliary ganglion, is now known to have additional survival and differentiative actions on cells of the nervous system. CNTF is, however, unrelated in structure to the nerve growth factor family of neurotrophic factors. Instead, CNTF is distantly related to, and in fact shares receptor components with, a number of hemopoietic cytokines. This review focuses on the biological actions of CNTF, the shared and unique features of the CNTF receptor complex and signaling pathways, and the distribution of CNTF and its receptor during development, in the adult and in response to injury.  相似文献   

5.
Kainic acid (KA)-induced seizure in rat involves eicosanoid production in the brain, but their production mechanism and biological functions are poorly understood. We profiled the eicosanoid production during KA-induced seizure by a comprehensive lipidomics analysis using liquid chromatography-tandem mass spectrometry. Systemic KA administration caused production of large amounts of prostaglandin (PG) F(2alpha) and PGD(2) in the hippocampus, with smaller amounts of other PGs and hydroxyeicosatetraenoic acids. The production was biphasic, which consisted of an initial burst in the first 30 min and a sustained late phase production. The initial phase was specific to the hippocampus and was blocked by intracerebroventricular administration of KA receptor antagonists. A selective cyclooxygenase (COX)-2 inhibitor, NS398, completely inhibited the initial phase productions, except for PGD(2) and thromboxane B(2), whose productions were also dependent on COX-1. These results suggest that KA signals directly stimulate the arachidonic acid cascade in the initial phase and that COX-1 and COX-2, both constitutively expressed at low levels, differentially contribute to PG productions. In the late phase, a sustained PG production in hippocampus appears due to the increased COX-2 levels even with a limited arachidonic acid supply. The present study demonstrates a dual phase regulatory mechanism of eicosanoid production during KA-induced seizure, providing a biochemical basis for understanding the biosynthesis and roles of eicosanoids in the brain.  相似文献   

6.
Attempts to promote neuronal survival and repair with ciliary neurotrophic factor (CNTF) have met with limited success. The variability of results obtained with CNTF may, in part, reflect the fact that some of the biological actions of the cytokine are mediated by a complex formed between CNTF and its specific receptor, CNTFRalpha, which exists in both membrane-bound and soluble forms. In this study, we compared the actions of CNTF alone and CNTF complexed with soluble CNTFRalpha (hereafter termed "Complex") on neuronal survival and growth. Although CNTF alone produced limited effects, Complex protected against glutamate-mediated excitotoxicity via gap junction-dependent and -independent mechanisms. Further examination revealed that only Complex promoted neurite outgrowth. Differential gene expression analysis revealed that, compared with CNTF alone, Complex differentially regulates several neuroprotective and neurotrophic genes. Collectively, these findings indicate that CNTF exerts more robust effects on neuronal survival and growth when applied in combination with its soluble receptor.  相似文献   

7.
We have previously observed that ciliary neurotrophic factor (CNTF) can prevent the degeneration of androgen-sensitive perineal motoneurons and their target muscles, the bulbocavernosus and levator ani (BC/LA), in perinatal female rats. Response to CNTF is dependent on the expression of the alpha component of the CNTF receptor (CNTFRα). In the present study, we examined the developmental profile and androgen regulation of CNTFRα gene expression in BC/LA muscle, thigh muscle, and lumbosacral spinal cord. CNTFRα mRNA was abundantly expressed in the BC/LA and thigh around the time of birth; expression declined progressively after birth and remained low into adulthood. In contrast, CNTFRα message remained high in the lumbosacral spinal cord throughout development. Androgen regulation of CNTFRα expression was examined in prenatal animals by administering the androgen receptor blocker hydroxyflutamide from embryonic days E18 through E21. Four days of androgen deprivation caused a significant up-regulation of CNTFRα mRNA in the BC/LA, thigh, and spinal cord of male fetuses. After castration in adulthood, CNTFRα expression in the BC/LA transiently increased, then decreased below control levels. Expression of CNTFRα in thigh muscles and the lumbosacral spinal cord was not affected by adult castration. Thus, the perineal muscles and motoneurons are potential sites of direct CNTF action, and expression of the CNTFRα gene is modulated by androgen, especially in the androgen-sensitive perineal muscles. Transient up-regulation of CNTFRα following castration or androgen receptor blockade may represent a protective response designed to counteract the muscle atrophy normally induced by androgen withdrawal. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 217–225, 1998  相似文献   

8.
Osteopontin in kainic acid-induced microglial reactions in the rat brain   总被引:3,自引:0,他引:3  
The present study was performed to investigate the spatial and temporal expression of osteopontin (OPN) mRNA in the rat brain after kainic acid-induced seizures, and to determine whether this phenomenon is associated spatiotemporally with the microglial reaction. The expression of OPN mRNA was detected using an in situ hybridization technique and Northern blot analysis. Following intraperitoneal injection of kainic acid (10 mg/kg), OPN mRNA was expressed in selective vulnerable areas, including the hippocampus, thalamus, hypothalamus, amygdala, and entorhinal cortex. Comparison of the morphology and localization with the established microglial marker OX-42 in the adjacent sections positively identified the OPN-expressed cells as microglia. Furthermore, double labeling experiments revealed that OPN mRNA expression was confined to ameboid-like cells among microglia stained with GSI-B4, an another microglial marker. These findings from a rat model of seizure support the notion that OPN can be synthesized in a subpopulation of reactive microglial cells. It can therefore be assumed that in the response of the brain to excitotoxic injury, synthesis of OPN occurs generally in a subset of activated microglia.  相似文献   

9.
Feng H  Lu LM  Huang Y  Zhu YC  Yao T 《生理学报》2005,57(5):537-544
高浓度的皮质酮可引起海马形态与功能的损伤,其中脑源性神经营养因子(brain-derived neurotrophic factor,BDNF) 表达的改变在海马形态与功能损伤中扮演重要角色。本实验的目的是观察单次皮下注射皮质酮后海马内BDNF-mRNA、前 体蛋白及成熟型蛋白表达的改变,并观察N-甲基-D-天冬氨酸(N-methyl-D-aspartate NMDA)受体阻滞剂MK801对皮质酮 作用的影响。实验结果显示,单次皮下注射皮质酮2 mg/kg,3 h后海马内BDNF mRNA、前体蛋白及成熟型蛋白的表达 均降低;MK801(0.1 mg/kg)对皮质酮的这一作用有增强效果。单独给予皮质酮或注射MK801 30 min后再给予皮质酮, 均能明显降低海马中cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)的磷酸化水平,MK801与 皮质酮联用时CREB的磷酸化水平降低更为显著(与单独给予皮质酮相比,P<0.05)。实验结果提示,CREB磷酸化水平降 低可能是皮质酮引起海马BDNF表达减少的重要中间环节,阻断NMDA受体可加强皮质酮降低BDNF表达的效应。  相似文献   

10.
In prior studies, nerve growth factor (NGF) administration induced a robust, selective increase in the neurochemical differentiation of caudate-putamen cholinergic neurons. In this study, expression of NGF and its receptor was examined to determine whether endogenous NGF might serve as a neurotrophic factor for these neurons. The temporal pattern of NGF gene expression and the levels of NGF mRNA and protein were distinct from those found in other brain regions. NGF and high-affinity NGF binding were present during cholinergic neurochemical differentiation and persisted into adult-hood. An increase in NGF binding during the third postnatal week was correlated with increasing choline acetyltransferase activity. The data are consistent with a role for endogenous NGF in the development and, possibly, the maintenance of caudate-putamen cholinergic neurons.  相似文献   

11.
Cloning and expression of human ciliary neurotrophic factor   总被引:1,自引:0,他引:1  
Ciliary neurotrophic factor (CNTF) is a survival factor for avian ciliary ganglion neurons and a variety of other neuronal cell types in vitro. We report here the cloning of the entire genomic sequence encoding human CNTF and its primary structure. Biologically active CNTF has been expressed in Chinese hamster ovary cells from a human genomic DNA clone. Human CNTF has no significant sequence similarity to any previously reported protein, although approximately 84% similarity exists compared with rat and rabbit CNTF. The lack of both an N-terminal signal sequence and consensus sequences for glycosylation or hydrophobic regions, and the fact that active CNTF is expressed but not released into the culture medium of transfected cells, argue in favour of human CNTF as a cytosolic protein. These data provide a basis for understanding the role of CNTF in nervous system physiology and pathology.  相似文献   

12.
Galanin receptor and its ligands in the rat hippocampus   总被引:8,自引:0,他引:8  
Receptors for the 29-amino-acid peptide, galanin, in membranes from the rat ventral hippocampus were examined using chloramine-T-iodinated porcine galanin as ligand. The equilibrium binding of 125I-galanin showed the presence of a high-affinity binding site (Kd = 1.91 +/- 0.40 nM). The concentration of the high-affinity-binding sites was 107 +/- 15 fmol/mg membrane protein. The on rate constant was estimated to be 2.6 +/- 0.1 M-1 min-1 at 37 degrees C. The affinity of rat galanin (differing in three amino acid residues from the porcine protein) was equal to that of porcine galanin. The 125I--galanin-binding site is a trypsin-sensitive membrane protein, which is heat-denaturated at 60 degrees C within 5 min. The effect of GTP and its analogs and of pertussis-toxin-catalyzed ADP-ribosylation on the binding of 125I-galanin suggest that the galanin receptor is coupled to an inhibitory G protein (Gi protein). 127I-galanin was shown to be a ligand with affinity equal to that of galanin in displacing 125I-galanin. The 125I-galanin-binding site in the ventral hippocampus recognizes as a ligand the tryptic fragments 1-20 and 21-29 of rat galanin and the synthetic fragments 12-29, 18-29 and 21-29 of porcine galanin. None of these afforded full inhibition of the binding of fragment 1-29 of 125I-galanin at a concentration of 1 microM.  相似文献   

13.
Ciliary neurotrophic factor, cardiotrophin-like cytokine, and neuropoietin are members of the four-helix bundle cytokine family. These proteins signal through a common tripartite receptor composed of leukemia inhibitory factor receptor, gp130, and ciliary neurotrophic factor receptor alpha. Binding to ciliary neurotrophic factor receptor alpha occurs through an interaction site located at the C terminus of the cytokine AB loop and alphaD helix, known as site 1. In the present study, we have generated a model of neuropoietin and identified a conserved binding site for the three cytokines interacting with ciliary neurotrophic factor receptor alpha. To identify the counterpart of this site on ciliary neurotrophic factor receptor alpha, its cytokine binding domain was modeled, and the physicochemical properties of its surface were analyzed. This analysis revealed an area displaying properties complementary to the site 1 of ciliary neurotrophic factor, cardiotrophin-like cytokine, and neuropoietin. Based on our computational predictions, residues were selected for their potential involvement in the ciliary neurotrophic factor receptor alpha binding epitope, and site-directed mutagenesis was carried out. Biochemical, cell proliferation, and cell signaling analyses showed that Phe(172) and Glu(286) of ciliary neurotrophic factor receptor alpha are key interaction residues. Our results demonstrated that ciliary neurotrophic factor, cardiotrophin-like cytokine, and neuropoietin share a conserved binding site on ciliary neurotrophic factor receptor alpha.  相似文献   

14.
Protein kinase C (PKC) consists of a family of Ca2+/phospholipid-dependent isozymes that has been implicated in the delayed neurotoxic effects of glutamate in vitro. In the present study, we assessed the effect of the glutamate analogue kainic acid (KA) on the subcellular expression of PKC isozymes in the hippocampus (HPC) in the period preceding (0.5, 1.5, 12, and 24 h) and during (120 h) hippocampal necrosis using western blot analysis and PKC isozyme-specific antibodies. Before subcellular fractionation (cytosol + membrane), hippocampi were microdissected into "HPC" (fields CA1-CA3) and "dentate gyrus" (DG; granule cells + hilus) regions. Four general patterns of alterations in PKC isozyme expression/distribution were observed following KA treatment. The first pattern was a relative stability in expression following KA treatment and was most apparent for cytosol PKCalpha (HPC + DG) and membrane (HPC) and cytosol (DG) PKCbetaII. The second pattern, observed with PKCgamma and PKCepsilon, was characterized by an initial increase in expression in both membrane and cytosolic fractions before seizure activity (0.5 h) followed by a gradual decrease until significant reductions are observed by 120 h. The third pattern, exhibited by PKCdelta, involved an apparent translocation, increasing in the membrane and decreasing in the cytosol, followed by down-regulation in both fractions and subsequent recovery. The fourth pattern was observed with PKCzeta only and entailed a significant reduction in expression before and during limbic motor seizures followed by a dramatic fivefold increase in the membrane fraction during the period of hippocampal necrosis (120 h). Although these patterns did not segregate according to conventional PKC isozyme classifications, they do indicate dynamic isozyme-specific regulation by KA. The subcellular redistribution of PKC isozymes may contribute to the histopathological sequelae produced by KA in the hippocampus and may model the pathogenesis associated with diseases involving glutamate-induced neurotoxicity.  相似文献   

15.
CNTF rescues various types of lesioned neurons in vivo, and it needs to be released from astrocytes into the extracellular space to have the effect. However, direct evidence for CNTF release has not been unequivocally demonstrated. We hypothesized that the rapid sequestration by CNTF receptor present on cultured astrocytes might be the cause of the inability to detect CNTF released into astrocyte-conditioned medium (ACM). Therefore, we measured CNTF immunoreactivity in medium conditioned by astrocytes treated with phosphatidylinositol-specific phospholipase C (PI-PLC) which was used to prevent released CNTF from binding to the CNTF receptor, since PI-PLC cleaves glycosyl-phosphatidylinositol anchor of CNTFR, the unique component involved in CNTF binding. CNTF was not detectable in untreated ACM, but was detectable in PI-PLC-treated ACM. These results together with the evidence that PI-PLC treatment did not have a toxic effect on astrocytes prove the fact that CNTF can be released from astrocytes without cell lysis. Subsequently, the effect of cytokines such as IL-1, TNF-, and EGF on CNTF release was examined. These cytokines increased CNTF protein levels in ACMs without increasing CNTF protein levels in astrocyte-extracts, indicating that they enhanced CNTF release from astrocytes.  相似文献   

16.
Heme oxygenase-1 (HO-1) is induced under various stresses. Here we report the induction and localization of HO-1 in the rat brain by intraperitoneal administration of kainic acid (KA). Both mRNA and protein of HO-1 were markedly induced by KA treatment, and each maximal induction was observed 24 h after KA administration. In situ hybridization analysis showed that HO-1 mRNA appeared predominantly in glial cells, and confined neurons were positive in the cerebral cortex, basal ganglia, and hippocampal pyramidal cell layer. Immunohistochemical analysis showed that the positive cells in the cerebral cortex and hippocampus were mainly astrocytes and microglia, whereas neurons in the basal ganglia showed intense immunoreactivity. We also demonstrate the dissociation between HO-1 mRNA and protein level in the hippocampal pyramidal neurons, which is known to be vulnerable against excitotoxicity, and discuss the correlation between this dissociation and the vulnerability of hippocampal pyramidal neurons.  相似文献   

17.
18.
Ciliary neurotrophic factor (CNTF) is abundantly expressed in Schwann cells in adult mammalian peripheral nerves, but not in neurons. After peripheral nerve injury, CNTF released from disrupted Schwann cells is likely to promote neuronal survival and axonal regeneration. In the present study, we examined the expression and histochemical localization of CNTF in adult rat DRG in vivo and in vitro. In contrast to the restricted expression in Schwann cells in vivo, we observed abundant CNTF mRNA and protein expression in DRG neurons after 3 h, 2, 7, and 15 days in dissociated cell culture. At later stages (7 and 15 days) of culture, CNTF immunoreactivity was detected in both neuronal cell bodies and regenerating neurites. These results suggest that CNTF is synthesized and transported to neurites in cultured DRG neurons. Since we failed to observe CNTF immunoreactivity in DRG neurons in explant culture, disruption of cell–cell interactions, rather than the culture itself, may be an inducible factor for localization of CNTF in the neurons.  相似文献   

19.
Increasing evidence supports the critical role of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) glutamate receptors in psychostimulant action. These receptors are regulated via a phosphorylation‐dependent mechanism in their trafficking, distribution, and function. The hippocampus is a brain structure important for learning and memory and is emerging as a critical site for processing psychostimulant effects. To determine whether the hippocampal pool of AMPA receptors is regulated by stimulants, we investigated and characterized the impact of amphetamine (AMPH) on phosphorylation of AMPA receptors in the adult rat hippocampus in vivo. We found that AMPH markedly increased phosphorylation of AMPA receptor GluA1 subunits at serine 845 (S845) in the hippocampus. The effect of AMPH was dose dependent. A single dose of AMPH induced a rapid and transient increase in S845 phosphorylation. Among different hippocampal subfields, AMPH primarily elevated S845 phosphorylation in the Cornu Ammonis area 1 and dentate gyrus. In contrast to S845, serine 831 phosphorylation of GluA1 and serine 880 phosphorylation of GluA2 were not altered by AMPH. In addition, surface expression of hippocampal GluA1 was up‐regulated, while the amount of intracellular GluA1 fraction was concurrently reduced in response to AMPH. GluA2 protein levels in either the surface or intracellular pool were insensitive to AMPH. These data demonstrate that the AMPA receptor in the hippocampus is sensitive to dopamine stimulation. Acute AMPH administration induces dose‐, time‐, site‐, and subunit‐dependent phosphorylation of AMPA receptors and facilitates surface trafficking of GluA1 AMPA receptors in hippocampal neurons in vivo.

  相似文献   


20.
Compared with first-generation antipsychotics (FGAs), second-generation antipsychotics (SGAs) seem to be neuroprotective and trigger neuroplasticity. Because neuroplasticity is regulated by a variety of neurotrophic factors we studied differential effects of haloperidol (HAL, a FGA) and olanzapine (OLZ, a SGA) on temporal expression of erythropoietin (EPO), a potent neuroprotective factor and its receptor (EPOr) in rat brain. Rats (8-10/group) were treated with HAL or OLZ for 14 days (HAL-14 or OLZ-14) or 45 days (HAL-45 or OLZ-45). Animals were killed by decapitation or by perfusion to collect brains for immunoblotting and immunohistochemical analysis respectively. In hippocampus, the levels of both EPO and EPOr were significantly increased in HAL-14 (p < 0.001) and OLZ-14 (p < 0.001) groups. Their levels decreased in HAL-45 compared with levels in HAL-14 (EPO, p < 0.001; EPOr, p < 0.05), whereas the levels were further increased (EPO, p < 0.05) in OLZ-45 compared with OLZ-14. In striatum, the levels of both EPO and EPOr were unchanged in HAL-14 and EPO levels significantly decreased in HAL-45 (p < 0.05), whereas their levels were significantly increased in OLZ-14 and OLZ-45 compared with the vehicle-treated control (p < 0.001). Both EPO and EPOr were primarily expressed by neurons and endothelial cells. These data suggest that SGAs such as OLZ may have neuroprotective effects through expression of EPO that may be clinically relevant for long-term safe and beneficial management of psychotic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号