首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Calcium-activated neutral protease activity was determined in PC12 cells exposed to ethanol for 96 h using a fluorescence-based assay with N -succinyl-Leu-Tyr 7-amido-4-methylcoumarin as the substrate. Stimulated activity was measured at high (1,400 µ M ) or low (140 µ M ) Ca2+ concentrations in the presence of 20 µ M ionomycin. Kinetic parameters were derived by fitting a model relating fluorescence intensity to time: Ft = F final*(1 − e − k obs t ). Cell extracts were subjected to nondenaturing gel electrophoresis and casein zymography with quantification of the activity of the two calpain isoforms. Exposure to ethanol significantly decreased whole cell calpain activity measured by k obs beginning at 20 m M , to 27.8% of control at 1,400 µ M Ca2+ and 29.2% of control at 140 µ M Ca2+ in the presence of 20 µ M ionomycin. No changes in μ-calpain or m-calpain activities were found in cell extracts from cells exposed to 20 m M ethanol, whereas at 40 and 80 m M ethanol, significant decreases in both μ-calpain and m-calpain activities were discovered.  相似文献   

2.
Abstract: This study shows that activation of M1 muscarinic receptors, when coexpressed in Chinese hamster ovary (CHO)-K1 cells with neuronal nitric oxide (NO) synthase (nNOS), produces early and late phases of elevation of both intracellular Ca2+ concentration and nNOS activity. We examined the relationship between receptor-mediated increases in intracellular Ca2+ concentration and activation of nNOS over both short and long intervals using guanosine 3',5'-cyclic monophosphate (cGMP) formation as a measure of nNOS activity. The rapid phase of nNOS activation was dependent on release of Ca2+ from intracellular stores in both the CHO M1/nNOS transfected cells and in neuroblastoma (N1E-115) cells, in which muscarinic receptors and nNOS are endogenously expressed. Two single point mutations in the M1 muscarinic receptor that have previously been shown to uncouple differentially the receptor from phosphoinositide hydrolysis produced parallel attenuation of the rapid phase of nNOS activation. Characterization of the prolonged phase of nNOS activation was done using the conversion of l -[3H]arginine to l -[3H]citrulline as well as cGMP formation following stimulation of M1 muscarinic receptors for 60 min. Both responses were dependent on influx of extracellular Ca2+ and were accompanied by prolonged formation of NO at functionally effective levels as late as 60 min following receptor activation. Therefore, this study demonstrates for the first time the existence of two mechanistically distinct phases of nNOS activation that are dependent on different sources of Ca2+.  相似文献   

3.
Abstract: We have recently demonstrated that nitric oxide (NO) donors can trigger either apoptosis or necrosis of neurons as a function of the intensity of the exposure. Here, we show that the apoptosis induced by the NO donors S -nitrosocysteine (SNOC) or S -nitroso- N -acetylpenicillamine (SNAP) in cultured cerebellar granule cells (CGCs) depends on NMDA receptor (NMDA-R) activation leading to intracellular Ca2+ overload. Early dissolution of actin filaments followed by breakdown of microtubules and nuclear lamins preceded the appearance of typical apoptotic features. NO donors induced tyrosine nitration in neurons, in a small population of contaminating astrocytes, and in cultures of cerebellar astroglial cells. However, astrocytes neither displayed cytoskeletal alterations nor underwent apoptosis. Competitive and uncompetitive NMDA receptor antagonists, such as d -aminophosphonovaleric acid and MK-801, did not influence tyrosine nitration but prevented the accumulation of intracellular Ca2+, cytoskeletal breakdown, and apoptosis induced by either SNOC or SNAP in CGCs. Taken together, these data strongly suggest that Ca2+ influx through NMDA-R-gated ion channels is a critical event in CGC apoptosis induced by NO donors.  相似文献   

4.
Abstract: A membrane cytoskeletal protein, fodrin, is a substrate for a Ca2+-dependent protease, calpain. It remains unknown whether μ-calpain or m-calpain is involved in the proteolysis of either α- or β-fodrin and in what subcellular localization during ischemia and reperfusion of the brain. To address these issues, we examined the distribution of fodrin and calpain and the activities of calpain and calpastatin (endogenous calpain inhibitor) in the same subcellular fractions. Rat forebrain was subjected to ischemia by a combination of occlusion of both carotid arteries and systemic hypotension, whereas reperfusion was induced by releasing the occlusion. Immunoblotting, activity measurement, and casein zymography did not detect the presence of μ-calpain or a significant change of m-calpain level after ischemia or reperfusion. However, casein zymography revealed a unique Ca2+-dependent protease that was eluted with both 0.18 and 0.40 M NaCl from a DEAE-cellulose column. α- and β-fodrins and m-calpain were found to be rich in the synaptosomal, nuclear, and cytosolic subfractions by immunoblotting analysis. Reperfusion (60 min) following ischemia (30 min) induced selective proteolysis of α-fodrin, which was inhibited by a calpain inhibitor, acetylleucylleucylnorleucinal (400 µ M , 1 ml, i.v.). The μ-calpain-specific fragment of β-fodrin was not generated during ischemia-reperfusion, supporting the possibility of the involvement of m-calpain rather than μ-calpain in the α-fodrin proteolysis.  相似文献   

5.
Nitric oxide (NO) biosynthesis in cerebellum is preferentially activated by calcium influx through N-methyl-D-aspartate (NMDA)-type glutamate receptors, suggesting that there is a specific link between these receptors and neuronal NO synthase (nNOS). Here, we find that PSD-95 assembles a postsynaptic protein complex containing nNOS and NMDA receptors. Formation of this complex is mediated by the PDZ domains of PSD-95, which bind to the COOH termini of specific NMDA receptor subunits. In contrast, nNOS is recruited to this complex by a novel PDZ-PDZ interaction in which PSD-95 recognizes an internal motif adjacent to the consensus nNOS PDZ domain. This internal motif is a structured "pseudo-peptide" extension of the nNOS PDZ that interacts with the peptide-binding pocket of PSD-95 PDZ2. This asymmetric interaction leaves the peptide-binding pocket of the nNOS PDZ domain available to interact with additional COOH-terminal PDZ ligands. Accordingly, we find that the nNOS PDZ domain can bind PSD-95 PDZ2 and a COOH-terminal peptide simultaneously. This bivalent nature of the nNOS PDZ domain further expands the scope for assembly of protein networks by PDZ domains.  相似文献   

6.
The current quantitative study demonstrates that the recruitment of neuronal nitric oxide synthase (nNOS) beneath N-methyl-D-aspartate (NMDA) receptors, via postsynaptic density 95 (PSD-95) proteins significantly enhances nitric oxide (NO) production. Real-time single-cell fluorescence imaging was applied to measure both NO production and Ca(2+) influx in Chinese hamster ovary (CHO) cells expressing recombinant NMDA receptors (NMDA-R), nNOS, and PSD-95. We examined the relationship between the rate of NO production and Ca(2+) influx via NMDA receptors using the NO-reactive fluorescent dye, diaminofluorescein-FM (DAF-FM) and the Ca(2+)-sensitive yellow cameleon 3.1 (YC3.1), conjugated with PSD-95 (PSD-95-YC3.1). The presence of PSD-95 enhanced the rate of NO production by 2.3-fold upon stimulation with 100 microm NMDA in CHO1(+) cells (expressing NMDA-R, nNOS and PSD-95) when compared with CHO1(-) cells (expressing NMDA-R and nNOS lacking PSD-95). The presence of nNOS inhibitor or NMDA-R blocker almost completely suppressed this NMDA-stimulated NO production. The Ca(2+) concentration beneath the NMDA-R, [Ca(2+)](NR), was determined to be 5.4 microm by stimulating CHO2 cells (expressing NMDA-R and PSD-95-YC3.1) with 100 microm NMDA. By completely permealizing CHO1 cells with ionomycin, a general relationship curve of the rate of NO production versus the Ca(2+) concentration around nNOS, [Ca(2+)](NOS), was obtained over the wide range of [Ca(2+)](NOS). This sigmoidal curve had an EC(50) of approximately 1.2 microm of [Ca(2+)](NOS), implying that [Ca(2+)](NR) = 5.4 microm can activate nNOS effectively.  相似文献   

7.
Abstract: In contrast to the predominantly participate, Ca2+/calmodulin-dependent nitric oxide (NO) synthase in endothelial cells, the corresponding neuronal isoenzyme is considered to be mainly soluble, presumably owing to the lack of a posttranslational myristoylation. However, preliminary findings from this and other laboratories suggest that a substantial portion of the neuronal NO synthase activity may in fact be membrane bound. We have therefore investigated the distribution of this enzyme among subcellular fractions of the rat and rabbit cerebellum in more detail. Up to 60% of the total NO synthase activity was found in the particulate fraction and, according to density gradient ultracentrifugation, associated mainly with the endoplasmic reticulum fraction. There was no apparent difference between the soluble and particulate enzymes with respect to their specific activity, Ca2+ and pH dependency, inhibitor sensitivity, or immunoreactivity, suggesting that both rat and rabbit cerebella contain a single Ca2+/calmodulin-dependent NO synthase. The inhibition by the cytochrome P450 inhibitor SKF-525A of the NO synthase activity in these subcellular fractions (IC50= 90 μ M ) and the fact that mammalian cytochrome P450 enzymes are endoplasmic reticulum-bound proteins support the notion that the cerebellar NO synthase is a cytochrome P450-type hemoprotein. Moreover, the aforementioned findings suggest that posttranslational myristoylation may not be the only factor determining the intracellular localization of NO synthase.  相似文献   

8.
Abstract: The [Ca2+]1 of cerebellar granule cells can be increased in a biphasic manner by addition of NMDA or by depolarization (induced by elevating the extracellular K+ level), which both activate Ca2+ influx. The possibility that these stimuli activate Ca2+-induced Ca2+ release was investigated using granule cells loaded with fura 2-AM. Dantrolene, perfused onto groups of cells during the sustained plateau phase of the [Ca2+]1 response to K+ or NMDA, was found to reduce the response to both agents in a concentration-dependent manner. Preincubation with thapsigargm (10 μ M ) substantially reduced the plateau phase of the [Ca2+], response to K+ and both the peak and plateau phases of the NMDA response. Preincubation with ryanodine (10 μ M ) also reduced both the K+-evoked plateau response and both phases of the NMDA response. Neither had a consistent effect on the peak response to K+. The effects of thapsigargin and ryanodine on the NMDA response were partially additive. These results demonstrate that in cerebellar granule cells a major component of both K+- and NMDA-induced elevation of [Ca2+]1 appears to be due to release from intracellular stores. The partial additivity of the effects of thapsigargin and ryanodine suggests that these agents affect two overlapping but nonidentical Ca2+ pools.  相似文献   

9.
N‐Methyl‐D‐aspartate (NMDA) receptors are key components in synaptic communication and are highly relevant in central nervous disorders, where they trigger excessive calcium entry into the neuronal cells causing harmful overproduction of nitric oxide by the neuronal nitric oxide synthase (nNOS) protein. Remarkably, NMDA receptor activation is aided by a second protein, postsynaptic density of 95 kDa (PSD95), forming the ternary protein complex NMDA/PSD95/nNOS. To minimize the potential side effects derived from blocking this ternary complex or either of its protein components, a promising approach points to the disruption of the PSD‐95/nNOS interaction which is mediated by a PDZ/PDZ domain complex. Since the rational development of molecules targeting such protein‐protein interaction relies on energetic and structural information herein, we include a thermodynamic and structural analysis of the PSD95‐PDZ2/nNOS‐PDZ. Two energetically relevant events are structurally linked to a “two‐faced” or two areas of recognition between both domains. First, the assembly of a four‐stranded antiparallel β‐sheet between the β hairpins of nNOS and of PSD95‐PDZ2, mainly enthalpic in nature, contributes 80% to the affinity. Second, binding is entropically reinforced by the hydrophobic interaction between side chains of the same nNOS β‐hairpin with the side chains of α2‐helix at the binding site of PSD95‐PDZ2, contributing the remaining 20% of the total affinity. These results suggest strategies for the future rational design of molecules able to disrupt this complex and constitute the first exhaustive thermodynamic analysis of a PDZ/PDZ interaction.  相似文献   

10.
Although calpain (EC 3.4.22) protease activation was suggested to contribute to excitotoxic delayed calcium deregulation (DCD) via proteolysis of Na+/Ca2+ exchanger 3 (NCX3), cytoplasmic calpain activation in relation to DCD has never been visualized in real-time. We employed a calpain fluorescence resonance energy transfer substrate to simultaneously image calpain activation and calcium deregulation in live cortical neurons. A calpain inhibitor-sensitive decline in fluorescence resonance energy transfer was observed at 39 ± 5 min after the occurrence of DCD in neurons exposed to continuous glutamate (100 μM). Inhibition of calpain by calpeptin did not delay the onset of DCD, recovery from DCD-like reversible calcium elevations, or cell death despite inhibiting α-spectrin processing by > 90%. NCXs reversed during glutamate exposure, the NCX antagonist KB-R7943 prolonged the time to DCD, and significant NCX3 cleavage following 90 min of glutamate exposure was not observed. Our findings suggest that robust calpain activation associated with acute glutamate toxicity occurs only after a sustained loss in calcium homeostasis. Processing of NCX3 or other calpain substrates is unlikely to be the primary cause of acute excitotoxicity in cortical neurons. However, a role for calpain as a contributing factor or in response to milder glutamate insults is not excluded.  相似文献   

11.
In the central nervous system, the activation of neuronal nitric oxide synthase (nNOS) is closely associated with activation of NMDA receptor, and trafficking of nNOS may be a prerequisite for efficient NO production at synapses. We recently demonstrated that pituitary adenylate cyclase activating polypeptide (PACAP) and NMDA synergistically caused the translocation of nNOS to the membrane and stimulated NO production in PC12 (pheochromocytoma) cells. However, the mechanisms responsible for trafficking and activation of nNOS are largely unknown. To address these issues, here we constructed a yellow fluorescent protein (YFP)-tagged nNOS N-terminal (1–299 a.a.) mutant, nNOSNT-YFP, and visualized its translocation in PC12 cells stably expressing it. PACAP enhanced the translocation synergistically with NMDA in a time- and concentration-dependent manner. The translocation was blocked by inhibitors of protein kinase A (PKA), protein kinase C (PKC), and Src kinase; and the effect of PACAP could be replaced with PKA and PKC activators. The β-finger region in the PSD-95/disc large/zonula occludens-1 domain of nNOS was required for the translocation of nNOS and its interaction with post-synaptic density-95 (PSD-95), and NO formation was attenuated by dominant negative nNOSNT-YFP. These results demonstrate that PACAP stimulated nNOS translocation mediated by PKA and PKC via PAC1-receptor (a PACAP receptor) and suggest cross-talk between PACAP and NMDA for nNOS activation by Src-dependent phosphorylation of NMDA receptors.  相似文献   

12.
Studies on hippocampal glycine release are extremely rare. We here investigated release from mouse hippocampus glycinergic terminals selectively pre-labelled with [3H]glycine through transporters of the GLYT2 type. Purified synaptosomes were incubated with [3H]glycine in the presence of the GLYT1 blocker NFPS to abolish uptake (∼ 30%) through GLYT1. The non-GLYT1-mediated uptake was entirely sensitive to the GLYT2 blocker Org25543. Depolarization during superfusion with high-K+ (15–50 mmol/L) provoked overflows totally dependent on external Ca2+, whereas in the spinal cord the 35 or 50 mmol/L KCl-evoked overflow (higher than that in hippocampus) was only partly dependent on extraterminal Ca2+. In the hippocampus, the Ca2+-dependent 4-aminopyridine (1 mmol/L)-evoked overflow was five-fold lower than that in spinal cord. The component of the 10 μmol/L veratridine-induced overflow dependent on external Ca2+ was higher in the hippocampus than that in spinal cord, although the total overflow in the hippocampus was only half of that in the spinal cord. Part of the veratridine-evoked hippocampal overflow occurred by GLYT2 reversal and part by bafilomycin A1-sensitive exocytosis dependent on cytosolic Ca2+ generated through the mitochondrial Na+/Ca2+ exchanger. As glycine sites on NMDA receptors are normally not saturated, understanding mechanisms of glycine release should facilitate pharmacological modulation of NMDA receptor function.  相似文献   

13.
We recently reported the first molecular genetic evidence that Dictyostelium Ca2+ responses to chemoattractants include a contribution from the endoplasmic reticulum (ER) – responses are enhanced in mutants lacking calreticulin or calnexin, two major Ca2+-binding proteins in the ER, even though the influx of Ca2+ into the mutants is reduced. Compared with wild-type cells, the ER in the mutants contributes at least 30–70 nM additional Ca2+ to the responses. Here we report that this additional ER contribution to the cytosolic Ca2+ signal depends upon extracellular Ca2+– it does not occur in the absence of extracellular Ca2+, increases to a maximum as the extracellular Ca2+ levels rise to 10 μM and then remains constant at extracellular Ca2+ concentrations up to at least 250 μM. These results suggest that Ca2+ influx causes the intracellular release, in the simplest scenario by a mechanism involving Ca2+-induced Ca2+ release from the ER. By way of contrast, we show that Ca2+ responses to mechanical stimulation are reduced, but still occur in the absence of extracellular Ca2+. Unlike the responses to chemoattractants, mechanoresponses thus include contributions from the ER that are independent of extracellular Ca2+.  相似文献   

14.
The calpain family of cysteine proteases has a well-established causal role in neuronal cell death following acute brain injury. However, the relative contribution of calpain isoforms to the various forms of injury has not been determined as available calpain inhibitors are not isoform-specific. In this study, we evaluated the relative role of m-calpain and μ-calpain in a primary hippocampal neuron model of NMDA-mediated excitotoxicity. Baseline mRNA expression for the catalytic subunit of m-calpain ( capn2 ) was found to be 50-fold higher than for the μ-calpain catalytic subunit ( capn1 ) based on quantitative real-time PCR. Adeno-associated viral vectors designed to deliver short hairpin RNAs targeting capn1 or capn2 resulted in 60% and 90% knockdown of message respectively. Knockdown of capn2 but not capn1 increased neuronal survival after NMDA exposure at 21 days in vitro . Nuclear translocation of calpain substrates apoptosis inducing factor, p35/p25 and collapsin response mediator protein (CRMP) 2–4 was not detected after NMDA exposure in this model. However, nuclear translocation of CRMP-1 was observed and was prevented by capn2 knockdown. These findings provide insight into potential mechanisms of calpain-mediated neurodegeneration and have important implications for the development of isoform-specific calpain inhibitor therapy.  相似文献   

15.
Abstract: Nitric oxide (NO) has been shown to be an important mediator in several forms of neurotoxicity. We previously reported that NO alters intracellular Ca2+ concentration ([Ca2+]i) homeostasis in cultured hippocampal neurons during 20-min exposures. In this study, we examine the relationship between late alterations of [Ca2+]i homeostasis and the delayed toxicity produced by NO. The NO-releasing agent S -nitrosocysteine (SNOC; 300 µ M ) reduced survival by about one half 1 day after 20-min exposures, as did other NO-releasing agents. SNOC also was found to produce prolonged elevations of [Ca2+]i, persisting at 2 and 6 h. Hemoglobin, a scavenger of NO, blocked both the late [Ca2+]i elevation and the delayed toxicity of SNOC. Removal of extracellular Ca2+ during the 20-min SNOC treatment failed to prevent the late [Ca2+]i elevations and did not prevent the delayed toxicity, but removal of extracellular Ca2+ for the 6 h after exposure as well blocked most of the toxicity. Western blots showed that SNOC exposure resulted in an increased proteolytic breakdown of the structural protein spectrin, generating a fragment with immunoreactivity suggesting activity of the Ca2+-activated protease calpain. The spectrin breakdown and the toxicity of SNOC were inhibited by treatment with calpain antagonists. We conclude that exposures to toxic levels of NO cause prolonged disruption of [Ca2+]i homeostatic mechanisms, and that the resulting persistent [Ca2+]i elevations contribute to the delayed neurotoxicity of NO.  相似文献   

16.
Sal1p, a novel Ca2+-dependent ATP-Mg/Pi carrier, is essential in yeast lacking all adenine nucleotide translocases. By targeting luciferase to the mitochondrial matrix to monitor mitochondrial ATP levels, we show in isolated mitochondria that both ATP-Mg and free ADP are taken up by Sal1p with a K m of 0.20 ± 0.03 mM and 0.28 ± 0.06 mM respectively. Nucleotide transport along Sal1p is strictly Ca2+ dependent. Ca2+ increases the V max with a S 0.5 of 15 μM, and no changes in the K m for ATP-Mg. Glucose sensing in yeast generates Ca2+ transients involving Ca2+ influx from the external medium. We find that carbon-deprived cells respond to glucose with an immediate increase in mitochondrial ATP levels which is not observed in the presence of EGTA or in Sal1p-deficient cells. Moreover, we now report that during normal aerobic growth on glucose, yeast mitochondria import ATP from the cytosol and hydrolyse it through H+-ATP synthase. We identify two pathways for ATP uptake in mitochondria, the ADP/ATP carriers and Sal1p. Thus, during exponential growth on glucose, mitochondria are ATP consumers, as those from cells growing in anaerobic conditions or deprived of mitochondrial DNA which depend on cytosolic ATP and mitochondrial ATPase working in reverse to generate a mitochondrial membrane potential. In conclusion, the results show that growth on glucose requires ATP hydrolysis in mitochondria and recruits Sal1p as a Ca2+-dependent mechanism to import ATP-Mg from the cytosol. Whether this mechanism is used under similar settings in higher eukaryotes is an open question.  相似文献   

17.
Abstract: The effects of arginine on calcium mobilization in human SK-N-SH neuroblastoma cells were examined. It was found that arginine potentiated an increase in carbachol-induced Ca2+ from the external Ca2+ influx as opposed to an internal Ca2+ release from intracellular pools. The potentiation effect of arginine on carbachol-induced calcium mobilization was mimicked by either 8-bromo cyclic GMP or sodium nitroprusside. In addition, it was found that arginine induced NO production and an increase in cyclic GMP. Moreover, arginine-induced potentiation, NO production, and cyclic GMP increases were all suppressed after the preincubation of cells with N -methyl- l -arginine or N -nitro- l -arginine, nitric oxide synthase inhibitor. It is suggested that the NO production and subsequent cyclic GMP elevation induced by arginine are responsible for the potentiation of carbachol-induced Ca2+ increase. Our results show the existence of a NO/cyclic GMP pathway and an interconnection of NO and Ca2+ signaling pathways in human SK-N-SH neuroblastoma cells. We also observed that NO, which is produced by endothelial CPAE cells, has a modulating effect on cyclic GMP elevation in human SK-N-SH neuroblastoma cells. The intercellular communication role of NO and its cell-diffusing character may also affect the regulation of nonneuronal cells in their interactions with neuronal cells.  相似文献   

18.
The release of regulated secretory granules is known to be calcium dependent. To examine the Ca2+-dependence of other exocytic fusion events, transferrin recycling in bovine chromaffin cells was examined. Internalised 125I-transferrin was released constitutively from cells with a half-time of about 7 min. Secretagogues that triggered catecholamine secretion doubled the rate of 125I-transferrin release, the time courses of the two triggered secretory responses being similar. The triggered 125I-transferrin release came from recycling endosomes rather than from sorting endosomes or a triggered secretory vesicle pool. Triggered 125I-transferrin release, like catecholamine secretion from the same cells, was calcium dependent but the affinities for calcium were very different. The extracellular calcium concentrations that gave rise to half-maximal evoked secretion were 0.1 m m for 125I-transferrin and 1.0 m m for catecholamine, and the intracellular concentrations were 0.1 μ m and 1 μ m , respectively. There was significant 125I-transferrin recycling in the virtual absence of intracellular Ca2+, but the rate increased when Ca2+ was raised above 1 n m , and peaked at 1 μ m when the rate had doubled. Botulinum toxin type D blocked both transferrin recycling and catecholamine secretion. These results indicate that a major component of the vesicular transport required for the constitutive recycling of transferrin in quiescent cells is calcium dependent and thus under physiological control, and also that some of the molecular machinery involved in transferrin recycling/fusion processes is shared with that for triggered neurosecretion.  相似文献   

19.
Abstract: Substance P and neurokinin A both potentiated N -methyl- d -aspartate (NMDA)-induced currents recorded in acutely isolated neurons from the dorsal horn of the rat. To elucidate the mechanism underlying this phenomenon, we measured the effects of tachykinins and glutamate receptor agonists on [Ca2+]i in these cells. Substance P, but not neurokinin A, increased [Ca2+]i in a subpopulation of neurons. The increase in [Ca2+]i was found to be due to Ca2+ influx through voltage-sensitive Ca2+ channels. Substance P and neurokinin A also potentiated the increase in [Ca2+]i produced by NMDA, but not by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, or 50 m M K+. Phorbol esters enhanced the effects of NMDA and staurosporine inhibited the potentiation of NMDA effects by tachykinins. It is concluded that activation of protein kinase C may mediate the enhancement of NMDA effects by tachykinins in these cells. However, the effects of tachykinins on [Ca2+]i can be dissociated from their effects on NMDA receptors.  相似文献   

20.
Recent studies showed that heatshock protein 90 (HSP90) enhances nitric oxide (NO) synthesis fromendothelial and neuronal NO synthase (eNOS and nNOS, respectively).However, these findings were based on indirect NO measurements.Moreover, although our previous studies showed that the action of HSP90involves increased Ca2+/calmodulin (Ca2+/CaM)binding, quantitative measurements of the effect of HSP90 on CaMbinding to nNOS have been lacking. With electron paramagnetic resonancespectroscopy, we directly measured NO signals from purified nNOS. HSP90augmented NO formation from nNOS in a dose-dependent manner. Tryptophanfluorescence-quenching measurements revealed that HSP90 markedlyreduced the Kd of CaM to nNOS (0.5 ± 0.1 nM vs. 9.4 ± 1.8 nM in the presence and absence of HSP90,P < 0.01). Ca2+ ionophore triggered strongNO production from nNOS-transfected cells, and this was significantlyreduced by the HSP90 inhibitor geldanamycin. Thus these studies providedirect evidence demonstrating that HSP90 enhances nNOS catalyticfunction in vitro and in intact cells. The effect of HSP90 is mediatedby the enhancement of CaM binding to nNOS.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号