首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Thirty line x tester experiments involving diverse chickpea (Cicer arietinum L.) germplasm were conducted over 8 years and three locations to determine the nature of the genetic variance for grain yield and related characters, and the effects of generation and environment on these genetic parameters. Days-to-flowering, 100-seed mass, and seeds per pod were predominantly under the control of additive genetic variance, while both additive and non-additive genetic components of variance were important for days-to-maturity, plant height, primary and secondary branches, pods per plant, and seed yield. The F1 and F2 generations were found equally useful in estimating the genetic variances for different characters because the generation did not significantly interact with genetic parameters in the majority of cases. Sites or seasons, on the other hand, showed significant interaction with genetic components of variances; additive variance showed a larger interaction with environments than non-additive variance. This indicated the importance of more than one site and/ or season for unbiased estimation of the genetic components of variance. The results were compared with previous findings from diallel analyses.ICRISAT Journal Article No. 1200  相似文献   

2.
Summary Genetic control of tiller number, grain number, grain weight, harvest index and grain yield in six generations, along with the biparentals, F3s, F2xparental progeny, and F2xF1 progeny were investigated in an intervarietal cross of bread wheat involving two highly competitive varieties, WL711 and HD 2009. The performance of F1, B1, B2, F2, × p1, F2 × P2 and F2 × F1 progeny was midway between the parents involved with respect to all the evaluated characters. The biparental progeny excelled the mean performance of their corresponding F2 and F3 progeny in tiller number, seed weight and grain yield. The estimates of variance components obtained from the two models deployed were almost similar. Considerable additive genetic variance was observed for grains per spike, seed weight and grain yield while dominance variance was more pronounced for harvest index. The additive-dominance model was adequate for grains per spike and harvest index. Epistatic effects of additive × additive and additive × dominance type for tiller number and grain yield, and of additive × dominance type for seed weight were observed. The digenic epistatic model was inadequate for explaining the nature of gene action for tiller number, seed weight and grain yield. The studies indicated that non-allelic interactions should not be ignored in formulating wheat breeding programmes and that a biparental approach could be adopted as an extremely useful tool for enhancing genetic variability and the creation of transgressive segregants. The usefulness of breeding methodologies utilising a biparental approach is discussed.  相似文献   

3.
The heritability, the number of segregating genes and the type of gene interaction of nine agronomic traits were analysed based on F2 populations of synthetic oilseedBrassica napus produced from interspecific hybridization ofB. campestris andB. oleracea through ovary culture. The nine traits—plant height, stem width, number of branches, length of main raceme, number of pods per plant, number of seeds per pod, length of pod, seed weight per plant and 1000-seed weight—had heritabilities of 0.927, 0.215, 0.172, 0.381, 0.360, 0.972, 0.952, 0.516 and 0.987 respectively, while the mean numbers of controlling genes for these characters were 7.4, 10.4, 9.9, 12.9, 11.5, 21.7, 20.5, 19.8 and 6.4 respectively. According to estimated coefficients of skewness and kurtosis of the traits tested, no significant gene interaction was found for plant height, stem width, number of branches, length of main raceme, number of seeds per pod and 1000-seed weight. Seed yield per plant is an important target for oilseed production. In partial correlation analysis, number of pods per plant, number of seeds per pod and 1000-seed weight were positively correlated with seed yield per plant. On the other hand, length of pod was negatively correlated (r = -0.69) with seed yield per plant. Other agronomic characters had no significant correlation to seed yield per plant. In this experiment, the linear regressions of seed yield per plant and other agronomic traits were also analysed. The linear regression equation wasy = 0.074x8 + 1.819x9 + 6.72x12 -60.78 (R 2 = 0.993), wherex 8, x9 and x12 represent number of pods per plant, number of seeds per pod and 1000-seed weight respectively. The experiment also showed that erucic acid and oil contents of seeds from F2 plants were lower than those of their maternal parents. However, glucosinolate content was higher than that of the maternal plants. As for protein content, similar results were found in the F2 plants and their maternal parents. It was shown that the four quality traits, i.e. erucic acid, glucosinolate, oil content, and protein content, had heritability values of 0.614, 0.405, 0.153 and 0.680 respectively.  相似文献   

4.
Summary A random sample of seedlings representing high, medium and poor vigour was studied for tuber colour, tuber shape, eye depth, tuber cracking, tuber yield per plant, average tuber weight and number of tubers per plant in four successive generations (F1, F1, F1C2, and F1C3). Based on the performance of vigour groups in various generations and inter-generation correlation coefficients, we propose a procedure for the elimination of unproductive genotypes early in the breeding programme. The data indicates that seedlings of poor vigour can be discarded at the seedling stage prior to transplantation in the field. The rejection of clones on the basis of tuber colour, tuber shape, eye depth and tuber cracking can also be initiated at the seedling stage. For tuber yield and average tuber weight a negative selection (rejection of poor phenotypes) is suggested from the first clonal generation and for number of tubers, from second clonal generation, until statistically sound replicated trials can be conducted for carrying out positive selection.  相似文献   

5.
Summary Gene effects, and interactions, and associations between days-to-flower initiation and maturity, number of secondary branches and siliquae per plant, and 1,000-seed weight and yield per plant were studied in a cross of Indian mustard (Brassica juncea (L.) Czern & Coss) using the parents and F1, F2, F3, B1, B2, B11, B12, B21, B22, B1S, B2S, B1F1, B2F1, B1bip, B2bip, F2P1, F2F1, and F2bip generations. A linked digenic model was adequate for all characters studied. According to this model, the main effects, additive and interactions between linked pairs of genes, were present in varying proportions for days-to-flower initiation and maturity and number of siliquae per plant. The contribution of linked epistatic effects, however, was much greater than that of additive effects. Dominance effects contributed significantly to the inheritance of days-to-flower initiation. Duplicate epistasis was observed for all traits except 1,000-seed weight where epistasis was of the complementary type. A complete association among the genes of similar effect (increasing or decreasing) was observed for number of secondary branches and siliquae, and yield per plant. Coupling phase linkage was observed for days-to-flower initiation whereas repulsion phase linkage was observed for daysto-maturity and 1,000-seed weight.  相似文献   

6.
Fourteen north-west European spring barley cultivars were grown alone or in binary mixtures sampled according to a partial diallel scheme. On the basis of the association between cultivars in mixture and monoculture, three groups of characters were distinguished. Group A characters, plant height, ear weight/tiller, grain yield/tiller, number of grains/tiller and 1000-grain weight, showed strong positive associations between performance in monoculture and mixture. Group B characters, number of tillers/plant and harvest index showed incomplete positive associations, while for group C characters, dry matter/plant, ear weight/plant, grain yield/plant and number of grains/plant, associations were weak or non-existent. Compound characters in group C showed less genetic variation in monoculture and lower general competitive effects in mixture than component characters in groups A or B. These results clearly indicate that while selection for grain yield and other characters on a per plant basis (group C characters) is confounded by intergenotypic competition, characters such as the yield components number of grains/tiller and 1000-grain weight (group A characters) are hardly affected in this range of cultivars. Selection for opposing group A characters may start in the F2 generation, while any selection for group B and C characters should be delayed until later generations. The merits of indirect selection for yield using visual assessment of yield components are discussed. Separate analyses obtained by the inclusion of spring wheat cv. Timmo in monoculture and in the set of mixtures indicated that the use of spring wheat plants to minimise intergenotypic competition ranges from superfluous (group A characters) to useless (group C characters). A large degree of mixture advantage and the lack of complementary dominance and suppression between competitor and associate was attributed to the relatively low density of plants in the experiment which, though suitable for single plant selection, is not typical of normal seed rates for cropping.  相似文献   

7.
The comparative efficiency of four selection methods, viz., honeycomb (HC), pedigree selection (PS), single-seed descent (SSD) and the bulk method (BM), was assessed in three crosses of mungbean. The lines derived by each method, along with check varieties, were yield-tested in a compact family block design in F5 and F6 generations during summer and kharif of 1990. On the basis of the mean of the lines, the range, the number of superior lines over the best check, and the proportion of the top 10% lines in all the crosses and generations, the honeycomb method exhibited superiority over PS, SSD and BM for yield per plant and its component traits. PS, SSD and BM did not differ from each other. The honeycomb and SSD methods were found suitable for deriving superior lines for seed yield and pods per plant in mungbean.  相似文献   

8.
The experimental study was conducted during the period of 2008–2010 at the experimental field of the Institute of Forage Crops in Pleven. The hybridization scheme included direct and back crosses covering four varieties of forage pea (Pisum sativum L.), namely two spring ones, Usatii 90 and Kamerton from Ukraine, and a winter one from Bulgaria, Pleven 10. There was analyzed the inheritance of quantitative traits such as plant height, height to first pod, pod number per plant, seed number per plant, seed number per pod, seed weight per plant and number of fertile nodes per plant of parental components (P1 and P2) and both first (F1) and second (F2) hybrid generations. The cross Usatii 90 × Pleven 10 showed the highest real heterosis effect for plant height (8.26%), pods per plant (158.79%), seeds per plant (272.16%), seeds per pod (42.09%), seed weight per plant (432.43%) and number of fertile nodes per plant (117.14%). The cross Pleven 10 × Usatii 90 had the highest real heterosis effect height to first pod (11.06%). In F2 plants, the strongest depression for plant height (5.88%), seeds per plant (57.88%), seeds per pod (55.93%) and seed weight per plant (55.99%) was in the cross Usatii 90 × Pleven 10, for height to first pod (1.47%) in the cross Kamerton × Pleven 10 and for number of fertile nodes per plant (15.91%) in the cross Pleven 10 × Usatii 90. The highest positive degree of transgression for number of fertile nodes per plant (165.64%) and seed weight per plant (162.10%) was in the cross Pleven 10 × Kamerton and for pod number per plant (102.54%) and seeds per plant (99.13%) in Kamerton × Pleven 10. The stability of the characters was determined. Low variability in F1 and F2 was found in plant height (3.97–6.85%). Variability of number seeds per plant in F1 was highest (11.86–33.23%). For all other traits, the variability varied from average to high. A lower narrow-sense heritability coefficient was observed for plant height, height to first pod, pods per plant, seeds per plant and seed weight per plant (from 0.001 to 0.230). In few cases, such as in fertile nodes per plant (0.39 and 0.81) and seeds per pod (0.44), the coefficients of broad-sense heritability were higher.  相似文献   

9.
Summary Correlation, stepwise multiple regression and factor analyses were conducted on grain yield and a number of agronomic characters in the parental, F 1 and F 2 families originating from a 10 X 10 diallel cross in durum wheat. For the F 1 diallel, the correlation analysis indicated that the number of spikes and kernels per plant and 1,000 kernel weight had the highest correlations with grain yield; for the F 2 diallel, the number of spikes and kernels per meter, 1000 kernel weight and plant height showed most striking correlations with same.Stepwise multiple regression analysis indicated that, for the F 1 diallel, number of kernels per plant, 1000 kernel weight and days to maturity were the most potent predictor variables for grain yield, accounting for 78% of its variability. For the F 2 diallel, the number of kernels and number of spikes per meter, 1000 kernel weight and number of kernels per spike were the most potent predictors for grain yield, accounting for 91 % of its variability. Five common factors were extracted which explained 98.8% and 98.1% of the total variance in the F 1 and F 2 diallel, respectively. However, the importance of each of the five factors and the characters which loaded highly on each of them differed from generation to generation.Contribution No. 323 from Plant Science Department, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.  相似文献   

10.
Feeding by three grasshopper species, Camnula pellucida, Melanoplus packardii and Melanoplus sanguinipes, on three safflower (Carthamus tinctorius) lines for a 6-wk period from anthesis was monitored under field conditions. Ratings of feeding damage to different plant parts (leaves, floral parts, capitula, and peduncles) and measurements after termination of feeding (dry weight, seed yield, seed weight, seeds per capitulum, and capitula per row) were compared among grasshopper species and safflower lines. The Melanoplus species fed preferentially on leaves, floral parts, and capitula, while C. pellucida exhibited only peduncle feeding, which resulted in head clipping. Defoliation of 20 to 30% was associated with significant increases in total dry matter, seed yield, and number of capitula. Further defoliation resulted in decreases. The safflower lines differed in response to grasshopper feeding. S-208 was most susceptible to defoliation by grasshopper feeding, exhibiting decreased dry weight, seed yield, and capitula number. Lesaf 34C-00 was most tolerant and only M. packardii caused significant dry weight and seed yield reductions. Feeding by C. pellucida on this line resulted in an overall seed yield increase. Feeding by M. sanguinipes on Seedtec-5 resulted in yield increases of up to 16%. It appears that certain grasshopper species can increase seed yield in some safflower lines by stimulating the production of additional capitula. Therefore, moderate populations of such grasshoppers in fields of appropriate safflower cultivars do not necessarily require control.  相似文献   

11.
Summary Genetical studies on grain yield and its contributing traits were made in a six parent complete diallel in the F1 and F2 generations of one of the most widely grown grain species of grain amaranths (Amaranthus hypochondriacus L.). Graphical analysis indicated that epistasis exists for 1,000-grain weight in the F1. Grain weight/panicle, yield/plant and harvest index indicated absence of non-allelic gene interaction. The harvest index in the F1 and F2 and grain weight/ panicle, 1,000-grain weight, yield/plant in the F2 appeared to be controlled by overdominance effects. Higher grain yield appeared to be associated with dominant genes. Both additive and non-additive gene effects were responsible for the genetic variation in the diallel population. However, dominance variance was more important than additive variance in grain yield/ plant and harvest index in the F1 and F2. For 1,000-grain weight additive genetic variance was more important in the F1 and non-additive in F2. There was overdominance of a consistent nature in the two analyses for harvest index in the F1 and F2, grain weight/ panicle, 1,000-grain weight and yield/plant in the F2 and partial dominance for 1,000-grain weight in the F1.  相似文献   

12.
Summary The genetic variance among F2-derived lines of backcrosses (BCgF2-derived lines) depends on the backcross generation (g), the number of F1 plants crossed and selfed in generations 1 through g, and the number of BCgF2-derived lines evaluated. Additive genetic variance decreases linearly with backcrossing when one BCF1 plant per generation is crossed and selfed. The relationship is curvilinear if more than one BCF1 plant is used; as the number of BCF1 plants increases, additive genetic variance among BC1F2-derived lines approaches that among BC0F2-derived lines. The effect of population size on genetic variance is due both to fixation of alleles in previous generations and to sampling of genotypes in the population being evaluated. Dominance and repulsion linkage can cause small increases in genetic variance from BC0 to BC1.Joint contribution of USDA-ARS and Journal Paper No. J-11095 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2471  相似文献   

13.
Summary A study to obtain information on early segregating generations of an intervarietal cross WG 357 X Tobari 66 in spring wheat on the genetics of days to heading, plant height, ear length and spikelets per spike was conducted. WG 357 has amber, hard and lustrous grains and is a well adapted high yielding variety of North India whereas Tobari 66 is red grained introduction from CIMMYT.The parental F1, F2, B1, B2, biparentals, F3 (parents of biparentals), F3 bulk and F4 bulk generations were studied in order to provide analysis of generations means (Mather 1949; Hayman 1958) and variance component analysis (Kearsay 1965; Perkins and Jinks 1970).There were highly significant differences among the generations for all the characters studied. There were significant differences among the F3 lines as well as among the biparental progenies. Only in case of ear length was the contrast between the two also significant. The mean value of most of the generations arising from the cross fell between the parental range.The three-parameter model failed to account for the variation in generation means in the case of days to heading. This character was concluded to be influenced by linkage and higher order interactions. For the other characters the three parameter model was adequate. For all characters, additive gene effects were most important as compared to dominance gene effects.The analysis of gene action as provided by the generation variance indicated that additive variance was much more pronounced as compared to dominance variance. The heritability was high for days to heading (71 per cent for narrow sense and 80 per cent in broad sense) and plant height (62 and 93 per cent in narrow and broad sense respectively.The implications of the results in breeding programmes have been discussed.  相似文献   

14.
Reciprocal crosses between red and achromatic rice revealed that the seed color of F1 was determined by its female parent. According to the seed color and plant segregation ratio of F1, F2, and F3 generations, the red phenotype of red double-haploid seed was determined by a dominant, monogene with maternal effect. Histological study showed that the red pigments accumulated in the pericarp layer only. The assay of developmental timing of pigment accumulation showed that the red color accumulated from desiccation stage to perfectly maturation stage of the seeds.  相似文献   

15.
Summary Combining ability studies for grain yield and its primary component traits in diallel crosses involving seven diverse wheat cultivars of bread wheat (Triticum aestivum L.) over generations F1-F5 are reported. The general and specific combining ability variances were significant in all generations for all the traits except specific combining ability variance for number of spikes per plant in the F5. The ratio of general to specific combining ability variances was significant for all the traits except grain yield in all the generations. This indicated an equal role of additive and non-additive gene effects in the inheritance of grain yield, and the predominance of the former for its component traits. The presence of significant specific combining ability variances in even the advanced generations may be the result of an additive x additive type of epistasis or evolutionary divergence among progenies in the same parental array. The relative breeding values of the parental varieties, as indicated by their general combining ability effects, did not vary much over the generations. The cheap and reliable procedure observed for making the choice of parents, selecting hybrids and predicting advanced generation (F5) bulk hybrid performance was the determination of breeding values of the parents on the relative performance of their F2 progeny bulks.  相似文献   

16.
Several methods are available for estimating heritability in disomic species, including parent-offspring regression, realized heritability, intraclass correlations of recombinant inbred lines, and diallel-cross analysis. Estimates were obtained by these various methods for a set of eight bread wheat (Triticum aestivum) lines adapted to the East African highlands, which had been intercrossed and selfed in a half-diallel arrangement to give F1, F2 and F3 generations, and F6 recombinant inbred lines. Significant genetic variation existed among parents and crosses for both grain yield and yellow rust resistance in all generations. Based on the heritability calculated from the analysis of F6 recombinant inbred lines, analysis of the F2 diallel crosses was recommended for determining the heritability of both characters in early segregating generations. The results also suggest that a form of tandem selection may be effective in developing locally adapted germplasm which combines high grain yield with yellow rust resistance. Received: 15 February 1999 / Accepted: 11 March 1999  相似文献   

17.
Predicting the performance of recombinant inbred lines derived by single seed descent (SSD) following crosses between inbred lines is most reliable for traits in which epistasis and genotype environment interaction are absent. The analysis of two field trials of Brussels sprouts indicated the presence of such effects in seven quantitative characters. These effects could be minimised by transforming the scale on which each character was measured. Predictions were made of the likely performance of the recombinant inbred lines currently being produced by SSD at the Institute of Horticultural Research, Wellesbourne, compared with that of current F1 hybrid varieties. The predictions from the first trial of F2 material were encouraging for harvest date, stem length and waste weight, but low for sprout number, quality, marketable yield and total yield. Predictions from F3 material in the second trial were good for sprout number and total yield (in addition to harvest date, stem length and waste weight as before), but still low for marketable yield and quality, with less than 0 01% of lines expected to perform better than the F1. Model fitting to variances suggested the presence of linkage disequilibrium in dispersion for waste weight, but no information could be obtained about linkage disequilibrium for the two most important characters, marketable yield and quality. The broad heritability of each character except stem length was lower than 0 5 (0 3 or lower for total yield, waste weight and quality), suggesting that advanced generation selection, as used in SSD, might be more successful than selection in the early generations.  相似文献   

18.
 Chickpea (Cicer arietinum L.) ranks third in the world, and first in the Mediterranean basin, for production among pulses. Despite its importance as a crop and considerable research effort, traditional breeding methods have so far been unable to produce cultivars with a large impact on chickpea production. Interspecific hybridization is known to improve yield in many crops. Therefore, an attempt was made to increase the seed yield in chickpea through the introgression of genes from wild relatives at the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria, from 1987 to 1995. Four crosses, ILC 482 (C. arietinum)×ILWC 179 (C. echinospermum) and ILC 482×ILWC 124 (C. reticulatum) and their reciprocals, were made. Pedigree selection was used to advance the material. Heterosis was recorded visually in F1s, and single plant measurements for seed yield were recorded in F2 populations. Promising and uniform progenies were bulked in the F5 generation. Out of 96 F6 lines, 22 were selected on the basis of seed yield and other agronomic characters, and evaluated in a replicated trial for seed yield and 14 agronomical, morphological and quality characters. A high level of heterosis was observed in F1s. Several F2 plants produced two to three times more seed yield than the best plant from the cultigen. Nine F7 lines out-yielded the cultigen parent by up to 39%. Over 2 years, 12 lines had a higher yield than the cultigen parent. These lines were not only high yielding but also free of any known undesirable traits from the wild species, such as spreading growth habit, pod dehiscence, and non-uniform maturity. Quality traits, such as seed shape, type, colour, weight, and testa texture, protein content, cooking time and an organoleptic test of a Middle East dish, Homos Bi-Tehineh, were also similar to the cultigen parent. Both C. echinospermum and C. reticulatum contributed towards the increased yield. Received: 11 July 1996 / Accepted: 15 November 1996  相似文献   

19.
Backcrossing together with simple sequence repeat marker strategy was adopted to improve popular Malaysian chilli Kulai (Capsicum annuum L.) for heat tolerance. The use of molecular markers in backcross breeding and selection contributes significantly to overcoming the main drawbacks such as increase linkage drag and time consumption, in the ancient manual breeding approach (conventional), and speeds up the genome recovery of the recurrent parent. The strategy was adopted to introgress heat shock protein gene(s) from AVPP0702 (C. annuum L.), which are heat-tolerant, into the genetic profile of Kulai, a popular high-yielding chilli but which is heat sensitive. The parents were grown on seed trays, and parental screening was carried out with 252 simple sequence repeat markers. The selected parents were crossed and backcrossed to generate F1 hybrids and backcross generations. Sixty-eight markers appeared to be polymorphic and were used to assess the backcross generation; BC1F1, BC2F1 and BC3F1. The average recipient allele of the selected four BC1F1 plants was 80.75% which were used to produce the BC2F1 generation. BC1-P7 was the best BC1F1 plant because it had the highest recovery at 83.40% and was positive to Hsp-linked markers (Hsp70-u2 and AGi42). After three successive generations of backcrossing, the average genome recovery of the recurrent parent in the selected plants in BC3F1 was 95.37%. Hsp gene expression analysis was carried out on BC1F1, BC2F1 and BC3F1 selected lines. The Hsp genes were found to be up-regulated when exposed to heat treatment. The pattern of Hsp expression in the backcross generations was similar to that of the donor parent. This confirms the successful introgression of a stress-responsive gene (Hsp) into a Kulai chilli pepper variety. Furthermore, the yield performance viz. plant height, number of fruits, fruit length and weight and total yield of the improved plant were similar with the recurrent parent except that the plant height was significantly lower than the Kulai (recurrent) parent.  相似文献   

20.
Summary Selection in the F3 generation for seed yield, fruiting branches/plant, effective pods/plant, and seed index (100-seed weight) was carried out in two chickpea crosses. Sixty F5 lines (15 lines/selection criterion) along with check variety were evaluated for seed yield in three distinct environments. The effects of selection criteria on yield stability was examined using linear regression approach and genotype-grouping technique. There were no differences between selection criteria for linear yield responses of F5 lines to different environments. Within all four selection criteria the lines showed similar linear responses. The non-linear component was relatively higher for lines selected for effective pods and seed index than lines selected for yield and fruiting branches. On the basis of mean yield and coefficient of variation across environments, the seed index was the least effective selection criterion for developing high yielding and stable lines. When the results of stability parameters and genotype-grouping technique were considered together, selection for yield and fruiting branches was highly effective for isolating stable and high yielding lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号