首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Since MSX1 and PAX9 are linked to the pathogenesis of nonsyndromic tooth agenesis, we performed detailed mutational analysis of these two genes sampled from Japanese patients. We identified two novel MSX1 variants with an amino acid substitution within the homeodomain; Thr174Ile (T174I) from a sporadic hypodontia case and Leu205Arg (L205R) from a familial oligodontia case. Both the Thr174 and Leu205 residues in the MSX1 homeodomain are highly conserved among different species. To define possible roles of mutations at these amino acids in the pathogenesis of nonsyndromic tooth agenesis, we performed several functional analyses. It has been demonstrated that MSX1 plays a pivotal role in hard tissue development as a suppressor for mesenchymal cell differentiation. To evaluate the suppression activity of the variants in mesenchymal cells, we used the myoD-promoter, which is one of convenient reporter assay system for MSX1. Although the gene products of these MSX1 variants are stable and capable of normal nuclear localization, they do not suppress myoD-promoter activity in differentiated C2C12 cells. To clarify the molecular mechanisms underlying our results, we performed further analyses including electrophoretic mobility shift assays, and co-immunoprecipitation assays to survey the molecular interactions between the mutant MSX1 proteins and the oligonucleotide DNA with MSX1 consensus binding motif or EZH2 methyltransferase. Since EZH2 is reported to interact with MSX1 and regulate MSX1 mediated gene suppression, we hypothesized that the T174I and L205R substitutions would impair this interaction. We conclude from the results of our experiments that the DNA binding ability of MSX1 is abolished by these two amino acid substitutions. This illustrates a causative role of the T174I and L205R MSX1 homeodomain mutations in tooth agenesis, and suggests that they may influence cell proliferation and differentiation resulting in lesser tooth germ formation in vivo.  相似文献   

2.
Craniofacial disorders caused by mutations in homeobox genes MSX1 and MSX2   总被引:3,自引:0,他引:3  
The molecular biology of the homeobox genes MSX1 and MSX2 is reviewed. In a selective type of tooth agenesis, an MSX1 G --> C transversion results in a missense mutation Arg31Pro. The phenotype is due to haploinsufficiency. Boston-type craniosynostosis involves an MSX2 C --> A transversion, resulting in a missense mutation Pro7His. Three different mutations on MSX2 cause parietal foramina by haploinsufficiency. These mutations, which result in decreased parietal ossification, are in marked contrast to the gain-of-function mutation for Boston-type craniosynostosis, which results in increased sutural ossification.  相似文献   

3.
Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19INK4d. p19INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19INK4d throughout the investigated period indicates that p19INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.  相似文献   

4.
A nonsense mutation in MSX1 causes Witkop syndrome   总被引:12,自引:0,他引:12       下载免费PDF全文
Witkop syndrome, also known as tooth and nail syndrome (TNS), is a rare autosomal dominant disorder. Affected individuals have nail dysplasia and several congenitally missing teeth. To identify the gene responsible for TNS, we used candidate-gene linkage analysis in a three-generation family affected by the disorder. We found linkage between TNS and polymorphic markers surrounding the MSX1 locus. Direct sequencing and restriction-enzyme analysis revealed that a heterozygous stop mutation in the homeodomain of MSX1 cosegregated with the phenotype. In addition, histological analysis of Msx1-knockout mice, combined with a finding of Msx1 expression in mesenchyme of developing nail beds, revealed that not only was tooth development disrupted in these mice, but nail development was affected as well. Nail plates in Msx1-null mice were defective and were thinner than those of their wild-type littermates. The resemblance between the tooth and nail phenotype in the human family and that of Msx1-knockout mice strongly supports the conclusions that a nonsense mutation in MSX1 causes TNS and that Msx1 is critical for both tooth and nail development.  相似文献   

5.
Molecular morphogenetic fields in the development of human dentition.   总被引:8,自引:0,他引:8  
The mapping of the field of influence of specific regulatory molecules can provide a great deal of information on the molecular strategies that underlie the changes in the developmental program and macroevolutionary process. The strategy in this study was to use the variation in the number of teeth in the affected individuals of three mutant families with hypodontia, to determine the relative influence (relative molecular morphogenetic field) of MSX 1 and PAX 9 genes on the dental field. The variations in the pattern of symmetry of tooth agenesis were used in order to estimate the developmental stability of these genes. The approach used in the present work can help to explore new hypotheses linking development with the patterning of dentition during mammalian evolution. Furthermore, the developmental changes can be linked to changes in the molecular morphogenetic field of specific genes.  相似文献   

6.
Congenital tooth agenesis is caused by mutations in the MSX1, PAX9, WNT10A, or AXIN2 genes. Here, we report a Japanese family with nonsyndromic tooth agenesis caused by a novel nucleotide substitution in the intronic region between exons 1 and 2 of the MSX1 gene. Because the mutation is located 9 bp before exon 2 (c.452-9G>A), we speculated that the nucleotide substitution would generate an abnormal splice site. Using cDNA analysis of an immortalized patient blood cell, we confirmed that an additional 7-nucleotide sequence was inserted at the splice junction between exons 1 and 2 (c.451_452insCCCTCAG). The consequent frameshift generated a homeodomain-truncated MSX1 (p.R151fsX20). We then studied the subcellular localization of truncated MSX1 protein in COS cells, and observed that it had a whole cell distribution more than a nuclear localization, compared to that of wild-type protein. This result suggests a deletion of the nuclear localization signal, which is mapped to the MSX1 homeodomain. These results indicate that this novel intronic nucleotide substitution is the cause of tooth agenesis in this family. To date, most MSX1 variants isolated from patients with tooth agenesis involve single amino acid substitutions in the highly conserved homeodomain or deletion mutants caused by frameshift or nonsense mutations. We here report a rare case of an intronic mutation of the MSX1 gene responsible for human tooth agenesis. In addition, the missing tooth patterns were slightly but significantly different between an affected monozygotic twin pair of this family, showing that epigenetic or environmental factors also affect the phenotypic variations of missing teeth among patients with nonsyndromic tooth agenesis caused by an MSX1 haploinsufficiency.  相似文献   

7.
8.
9.
Even though selective tooth agenesis is the most common developmental anomaly of human dentition, its genetic background still remains poorly understood. To date, familial as well as sporadic forms of both hypodontia and oligodontia have been associated with mutations or polymorphisms of MSX1, PAX9, AXIN2 and TGFa, whose protein products play a crucial role in odontogenesis. In the present report we described a novel mutation of MSX1, which might be responsible for the lack of 14 permanent teeth in our proband. However, this c.581C>T transition, localized in a highly conserved homeobox sequence of MSX1, was identified also in 2 healthy individuals from the proband's family. Our finding suggests that this transition might be the first described mutation of MSX1 that might be responsible for oligodontia and showing incomplete penetrance. It may also support the view that this common anomaly of human dentition might be an oligogenic trait caused by simultaneous mutations of different genes.  相似文献   

10.
Association of MSX1 and TGFB3 with nonsyndromic clefting in humans.   总被引:16,自引:1,他引:15       下载免费PDF全文
Nonsyndromic cleft lip with or without cleft palate (CL/P) and nonsyndromic cleft palate only (CPO) are common congenital anomalies with significant medical, psychological, social, and economic ramifications. Both CL/P and CPO are examples of complex genetic traits. There exists sufficient evidence to hypothesize that disease loci for CL/P and CPO can be identified by a candidate-gene linkage-disequilibrium (LD) strategy. Candidate genes for clefting, including TGFA, BCL3, DLX2, MSX1, and TGFB3, were screened for LD with either CL/P or CPO in a predominantly Caucasian population, with both case-control- and nuclear-family-based approaches. Previously reported LD for TGFA with both CL/P and CPO could not be confirmed, except in CL/P patients with a positive family history. Also, in contrast to previous studies, no LD was found between BCL3 and either CL/P or CPO. Significant LD was found between CL/P and both MSX1 and TGFB3 and between CPO and MSX1, suggesting that these genes are involved in the pathogenesis of clefting. In addition, a mutation search in the genes DLX2, MSX1, and TGFB3 was performed in 69 CPO patients and in a subset of the CL/P patients. No common mutations were found in the coding regions of these genes; however, several rare variants of MSX1 and TGFB3 were found that may alter the latters' normal function. These results form the basis for future research, including (a) mutation searches in the MSX1 and TGFB3 genes in Caucasian CL/P patients and (b) extension of the search for MSX1 mutations in CPO patients to the noncoding regions.  相似文献   

11.
12.
In primates, the craniofacial skeleton and the dentition are marked by high levels of interspecific variation. Despite this, there are few comparative species studies conducted at the molecular level to investigate this functional diversity. We have determined nucleotide sequences of MSX1 and PAX9, two developmental genes, in a sample of 27 diverse primate species in order to identify coding or regulatory variation that may be associated with phenotypic diversity. Our analyses have identified four highly conserved noncoding sequences, including one that is conserved across primates and with dogs but not with mice. Although we find that substitution rates vary significantly across MSX1 exons, comparisons of nonsynonymous and synonymous substitution rates (dN/dS) suggest that, as a whole, MSX1 and PAX9 amino acid sequences have been under functional constraint throughout primate evolution. Compared to all other primates in our sample, our analysis of exon 1 in MSX1 finds an unusual pattern of amino acid substitution for Tarsius syrichta, a member of a lineage (tarsiers) that has many unique features among primates. For example, tarsiers are the only extant primates without deciduous incisors, and MSX1 is expressed exclusively in the incisor regions during the earliest stages of dental development. Our overall results provide insight into the utility of comparative species analyses of highly conserved developmental genes and their roles in the evolution of complex phenotypes.  相似文献   

13.
14.
A major question in modern biology is how gene mutations affect development and are translated into macroevolutionary changes in morphology. Variations in tooth number, a strategy used by many mammals to develop specialized dentitions, has been an important factor for species diversification. Changes in the number of teeth tend to occur in the reverse of the order teeth are formed during development, which also characterizes the general pattern of tooth loss observed during the evolution of placental mammals. To understand how changes at the molecular level affect the distinct stages of tooth development, we analyzed the ontogenesis of tooth growth arrest in sciurids and mice and in single and double knockout mutant mice. We show that the complexity of the genetic network that governs tooth development can change during ontogenetic trajectory, and these changes may be related to macroevolutionary changes. Furthermore, we show that the variation in tooth number in the affected members of human families bearing mutations in the MSX1 and PAX9 genes can help to understand how the genetic variations within a population can modulate evolutionary changes in dental patterning.  相似文献   

15.
Prior studies have implicated an involvement of the Msx1 homeobox gene in cleft palate in mice and its homolog in humans (called MSX1 in the HOX7 gene, located on chromosome 4). In this study we present evidence of a sex-dependent association between MSX1 and non-syndromic cleft lip/palate (NSCLP) in the Chilean population. The sample included 73 NSCLP cases, 37 from multiplex families (Mx), 36 from simplex families (Sx), and 87 controls. Polymerase chain reaction amplification of the MSX1 intragenic microsatellite (CA)n-sequence shows significant (p = 0.035) differences in the allele frequencies between NSCLP-Mx males and control males. These differences are mainly due to frequency differences in allele *2 (173 base pairs) among cases (21.9%) and controls (13.2%). When the NSCLP cases are subdivided by sex and positive family history (Mx versus Sx), the Mx males (27.8%) as well as the total NSCLP-Mx cases (25.7%) showed significantly higher frequencies of allele *2, compared to controls (11.4% and 13.2%, respectively). Analysis of the genotype data indicates that the relative risk for NSCLP is greater for persons carrying allele *2 (i.e., odds ratio [OR] larger than 1), reaching significance for all Mx cases (OR = 2.67; 95% confidence interval [CI], 1.10 to 6.52) and even more pronounced for Mx males (OR = 3.33; 95% CI, 1.08 to 10.32). Taken together, these findings support the hypothesis that the genetic variation at the MSX1 locus is a predisposing gene involved in sex-dependent susceptibility to clefting and that it also differentiates simplex from multiplex families.  相似文献   

16.
17.
18.

Background

The human heart consists of several cell types with distinct lineage origins. Interactions between these cardiac progenitors are very important for heart formation. The muscle segment homeobox gene family plays a key role in the cell morphogenesis and growth, controlled cellular proliferation, differentiation, and apoptosis, but the relationships between the genetic abnormalities and CHD phenotypes still remain largely unknown. The aim of this work was to evaluate variations in MSX1 and MSX2 for their possible associations with CHD.

Methods

We sequenced the MSX1 and MSX2 genes for 300 Chinese Han CHD patients and 400 normal controls and identified the variations. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 19.0). The Hardy-Weinberg equilibrium test of the population was carried out using the online software OEGE.

Results

Six variations rs4647952, rs2048152, rs4242182, rs61739543, rs111542301 and rs3087539 were identified in the MSX2 gene, but the genetic heterozygosity of those SNPs was very low. In contrast, the genetic heterozygosity of two variations rs3821949 near the 5’UTR and rs12532 within 3’UTR of the MSX1 gene was considerably high. Statistical analyses showed that rs3821949 and rs12532 were associated with the risk of CHD (specifically VSD).

Conclusions

The SNPs rs3821949 and rs12532 in the MSX1 gene were associated with CHD in Chinese Han populations.  相似文献   

19.
Inherited dentin defects are classified into three types of dentinogenesis imperfecta (DGI) and two types of dentin dysplasia (DD). The genetic etiology of DD-I is unknown. Defects in dentin sialophosphoprotein (DSPP) cause DD type II and DGI types II and III. DGI type I is the oral manifestation of osteogenesis imperfecta (OI), a systemic disease typically caused by defects in COL1A1 or COL1A2. Mutations in MSX1, PAX9, AXIN2, EDA and WNT10A can cause non-syndromic familial tooth agenesis. In this study a simplex pattern of clinical dentinogenesis imperfecta juxtaposed with a dominant pattern of hypodontia (mild tooth agenesis) was evaluated, and available family members were recruited. Mutational analyses of the candidate genes for DGI and hypodontia were performed and the results validated. A spontaneous novel mutation in COL1A2 (c.1171G>A; p.Gly391Ser) causing only dentin defects and a novel mutation in PAX9 (c.43T>A; p.Phe15Ile) causing hypodontia were identified and correlated with the phenotypic presentations in the family. Bone radiographs of the proband’s dominant leg and foot were within normal limits. We conclude that when no DSPP mutation is identified in clinically determined isolated DGI cases, COL1A1 and COL1A2 should be considered as candidate genes. PAX9 mutation p.Phe15Ile within the N-terminal β-hairpin structure of the PAX9 paired domain causes tooth agenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号