首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we synthesized (R)-phenylacetylcarbinol (PAC), a pharmaceutical intermediate for ephedrine and pseudoephedrine, from benzaldehyde and pyruvate using a recombinant pyruvate decarboxylase (PDC) from Zymomonas mobilis. A whole cell reaction consisting of 30 mM benzaldehyde, 60 mM pyruvate, and a mutant PDC enzyme (PDC W329M; 1.6 mg DCW/mL) produced 12.4 mM (R)-PAC and less than 0.3 mM benzyl alchohol in 15 h at 20°C, outperforming the crude enzyme extract reaction (1.2 mM (R)-PAC) and minimizing formation of benzyl alchohol, the major by-product of S. cerevisiae whole cell reaction. These observations suggested that recombinant E. coli whole cell reactions are more efficient than crude enzyme extract or yeast-based reactions. We also demonstrated that the E. coli whole cell reaction performed effectively without expensive thiamin diphosphate cofactor. Finally, whole cell reaction (8 mg DCW/mL) was carried out with 200 mM benzaldehyde, 400 mM pyruvate in 10 mL of 500 mM phosphate buffer (pH 6.5), and 72 mM (R)-PAC was produced with 36% conversion for 15 h. © KSBB  相似文献   

2.
This work demonstrates the first example of a fungal lactate dehydrogenase (LDH) expressed in yeast. A L(+)-LDH gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adh1 promoter and terminator and then placed in a 2μ-containing yeast-replicating plasmid. The resulting construct, pLdhA68X, was transformed and tested by fermentation analyses in haploid and diploid yeast containing similar genetic backgrounds. Both recombinant strains utilized 92 g glucose/l in approximately 30 h. The diploid isolate accumulated approximately 40% more lactic acid with a final concentration of 38 g lactic acid/l and a yield of 0.44 g lactic acid/g glucose. The optimal pH for lactic acid production by the diploid strain was pH 5. LDH activity in this strain remained relatively constant at 1.5 units/mg protein throughout the fermentation. The majority of carbon was still diverted to the ethanol fermentation pathway, as indicated by ethanol yields between 0.25–0.33 g/g glucose. S. cerevisiae mutants impaired in ethanol production were transformed with pLdhA68X in an attempt to increase the lactic acid yield by minimizing the conversion of pyruvate to ethanol. Mutants with diminished pyruvate decarboxylase activity and mutants with disrupted alcohol dehydrogenase activity did result in transformants with diminished ethanol production. However, the efficiency of lactic acid production also decreased. Electronic Publication  相似文献   

3.
4.
Lactobacillus casei is a lactic acid bacterium that produces L-lactate as the main product of sugar fermentation via L-lactate dehydrogenase (Ldh1) activity. In addition, small amounts of the D-lactate isomer are produced by the activity of a D-hydroxycaproate dehydrogenase (HicD). Ldh1 is the main L-lactate producing enzyme, but mutation of its gene does not eliminate L-lactate synthesis. A survey of the L. casei BL23 draft genome sequence revealed the presence of three additional genes encoding Ldh paralogs. In order to study the contribution of these genes to the global lactate production in this organism, individual, as well as double mutants (ldh1 ldh2, ldh1 ldh3, ldh1 ldh4 and ldh1 hicD) were constructed and lactic acid production was assessed in culture supernatants. ldh2, ldh3 and ldh4 genes play a minor role in lactate production, as their single mutation or a mutation in combination with an ldh1 deletion had a low impact on L-lactate synthesis. A Deltaldh1 mutant displayed an increased production of D-lactate, which was probably synthesized via the activity of HicD, as it was abolished in a Deltaldh1 hicD double mutant. Contrarily to HicD, no Ldh1, Ldh2, Ldh3 or Ldh4 activities could be detected by zymogram assays. In addition, these assays revealed the presence of extra bands exhibiting D-/L-lactate dehydrogenase activity, which could not be attributed to any of the described genes. These results suggest that L. casei BL23 possesses a complex enzymatic system able to reduce pyruvic to lactic acid.  相似文献   

5.
Patle S  Lal B 《Biotechnology letters》2007,29(12):1839-1843
Acid, alkaline and enzymatic hydrolysis of agricultural crop wastes were compared for yields of total reducing sugars with the hydrolysates being evaluated for ethanol production using a mixed culture of Zymomonas mobilis and Candida tropicalis. Acid hydrolysis of fruit and vegetable residues gave 49–84 g reducing sugars l−1 and 29–32 g ethanol l−1 was then obtained. Alkaline hydrolysis did not give significant amount of reducing sugars. Enzymatic hydrolysis of fruit and vegetable residues yielded 36–123 g reducing sugars l−1 and 11–54 g ethanol l−1.  相似文献   

6.
The effect of decreasing the organic (octanol) to aqueous phase volume ratio was evaluated in a two-phase enzymatic process for (R)-phenylacetylcarbinol (PAC) production. Decreasing the ratio from 1:1 to 0.43:1 at 4°C increased PAC in the organic phase from 112 g/l to 183 g/l with a 10% improvement in overall productivity. Interestingly, the rate of enzyme (pyruvate decarboxylase) activity loss was unaffected by the reduced phase ratio over the reaction period (48 h). At 20°C and 0.43:1 phase ratio the organic phase PAC concentration increased to 212 g/l and the overall productivity increased by 30% although the PAC yield (based on pyruvate) declined by about 10% due to greater byproduct acetoin formation at the higher temperature. Product recovery in such a system is facilitated both by the higher PAC concentration and the reduced organic phase volume.  相似文献   

7.
We isolated a total of 266 strains of lactic acid bacteria (LAB) from 28 dahi samples that were collected from different areas in Bangladesh. The isolated strains were identified on basis of their morphological, physiological and biochemical characteristics, the lactic acid isomer produced, the ability to ferment sugars and 16S rDNA analysis. Among the isolates, the cocci (73%) were dominant over the rods (27%). The distribution of the isolates by genus was as follows: Streptococcus (50%), Lactobacillus (27%), Enterococcus (9%), Leuconostoc (5%), Lactococcus (5%) and Pediococcus (4%). In this study, S. bovis was the most predominant species as this species represents 47.0% of the total isolates in dahi. The other species we isolated were identified as Lb. fermentum, Lb. delbrueckii ssp. bulgaricus, Lb. delbrueckii ssp. lactis, Lb. sp., Ec. faecium, S. thermophilus, Leuc. mesenteroides ssp. mesenteroides, Leuc. mesenteroides ssp. dextranicum, Lc. lactis ssp. lactis, Lc. raffinolactis and P. pentosaceus.  相似文献   

8.
Lactobacillus delbrueckii subsp. lactis strains were developed having increased activity, by gradually acclimatizing the bacteria to acidic conditions over repeated batch culture. Cells from one batch culture were used as the inoculum for the subsequent batch culture and thereby an adapted strain of Lactobacillus was obtained showing improved lactic acid productivity, cell growth and total glucose utilization. Furthermore, the acclimatized cells used significantly less nitrogen for a given level of lactic acid production, which is significant from an industrial point of view. The developed procedure decreases fermentation time and nutrient use, leading to reduced operation costs, while providing a lactic acid yield superior to previously reported methods.  相似文献   

9.
Hao J  Ma C  Gao C  Qiu J  Wang M  Zhang Y  Cui X  Xu P 《Biotechnology letters》2007,29(1):105-110
Pseudomonas stutzeri SDM oxidized dl-lactic acid (25.5 g l-1) into pyruvic acid (22.6 g l-1) over 24 h. Both NAD+-independent d-lactate dehydrogenase and NAD+-independent l-lactate dehydrogenase were found for the first time in the bioconversion of lactate to pyruvate based on the enzyme activity assay and proteomic analysis. Jianrong Hao and Cuiqing Ma contributed equally to this work  相似文献   

10.
Fishmeal wastewater, a seafood processing waste, was utilized for production of lactic acid and fungal biomass by Rhizopus oryzae AS 3.254 with the addition of sugars. The 30 g/l exogenous glucose in fishmeal wastewater was superior to starch in view of productivities of lactic acid and fungal biomass, and COD reduction. Fishmeal wastewater can be a replacement for peptone which was the most suitable nitrogen source for lactic acid production among the tested organic or inorganic nitrogen sources. Exogenous NaCl (12 g/l) completely inhibited the production of lactic acid and fungal growth. In the medium of COD 5,000 mg/l fishmeal wastewater with the addition of 30 g/l glucose, the maximum productivity of lactic acid was 0.723 g/l h corresponding to productivity of fungal biomass 0.0925 g/l h, COD reduction 84.9% and total nitrogen removal 50.3% at a fermentation time of 30 h.  相似文献   

11.
Alcohol dehydrogenase (ADH) is a key enzyme in the production and utilization of alcohols. Some also catalyze the formation of carboxylate esters from alcohols and aldehydes. The ADH1 and ADH3 genes of Neurospora crassa FGSC2489 were cloned and expressed in recombinant Escherichia coli to investigate their alcohol dehydrogenation and carboxylate ester formation abilities. Homology analysis and sequence alignment of amino acid sequence indicated that ADH1 and ADH3 of N. crassa contained a zinc-binding consensus sequence and a NAD+-binding motif and showed 54–75% identity with fungi ADHs. N. crassa ADH1 was expressed in E. coli to give a specific activity of 289 ± 9 mU/mg using ethanol and NAD+ as substrate and cofactor, respectively. Corresponding experiments on the expression and activity of ADH3 gave 4 mU/mg of specific activity. N. crassa ADH1 preferred primary alcohols containing C3–C8 carbons to secondary alcohols such as 2-propanol and 2-butanol. N. crassa ADH1 possessed 5.3 mU/mg of specific carboxylate ester-forming activity accumulating 0.4 mM of ethyl acetate in 18 h. Substrate specificity of various linear alcohols and aldehydes indicated that short chain-length alcohols and aldehydes were good substrates for carboxylate ester production. N. crassa ADH1 was a primary alcohol dehydrogenase using cofactor NAD+ preferably and possessed carboxylate ester-forming activity with short chain alcohols and aldehydes.  相似文献   

12.
Lactic acid is a versatile organic acid, which finds major application in the food, pharmaceuticals, and chemical industries. Microbial fermentation has the advantage that by choosing a strain of lactic acid bacteria producing only one of the isomers, an optically pure product can be obtained. The production of l(+) lactic acid is of significant importance from nutritional viewpoint and finds greater use in food industry. In view of economic significance of immobilization technology over the free-cell system, immobilized preparation of Lactobacillus casei was employed in the present investigation to produce l(+) lactic acid from whey medium. The process conditions for the immobilization of this bacterium using calcium pectate gel were optimized, and the developed cell system was found stable during whey fermentation to lactic acid. A high lactose conversion (94.37%) to lactic acid (32.95 g/l) was achieved with the developed immobilized system. The long-term viability of the pectate-entrapped bacterial cells was tested by reusing the immobilized bacterial biomass, and the entrapped bacterial cells showed no decrease in lactose conversion to lactic acid up to 16 batches, which proved its high stability and potential for commercial application.  相似文献   

13.
To confer the ability to ferment cello-oligosaccharides on the ethanol-producing bacterium, Zymomonas mobilis, the -glucosidase gene from EmRuminococcus albus, tagged at its N-terminal with the 53-amino acid Tat signal peptide from the periplasmic enzyme glucose–fructose oxidoreductase from Z. mobilis, was introduced into the strain. The tag enabled 61% of the -glucosidase activity to be transported through the cytoplasmic membrane of the recombinant strain which then produced 0.49 g ethanol/g cellobiose. Revisions requested 9 November 2004; Revisions received 10 December 2004; Accepted 13 December 2004  相似文献   

14.
This study aimed at examining and comparing the relevance of various methods in order to discriminate different cellular states of Lactobacillus bulgaricus CFL1 and to improve knowledge on the dynamics of the cellular physiological state during growth and acidification. By using four fluorescent probes combined with multiparametric flow cytometry, membrane integrity, intracellular esterase activity, cellular vitality, membrane depolarization, and intracellular pH were quantified throughout fermentations. Results were compared and correlated with measurements of cultivability, acidification activity (Cinac system), and cellular ability to recover growth in fresh medium (Bioscreen system). The Cinac system and flow cytometry were relevant to distinguish different physiological states throughout growth. Lb. bulgaricus cells maintained their high viability, energetic state, membrane potential, and pH gradient in the late stationary phase, despite the gradual decrease of both cultivability and acidification activity. Viability and membrane integrity were maintained during acidification, at the expense of their cultivability and acidification activity. Finally, this study demonstrated that the physiological state during fermentation was strongly affected by intracellular pH and the pH gradient. The critical pHi of Lb. bulgaricus CFL1 was found to be equal to pH 5.8. Through linear relationships between dpH and cultivability and pHi and acidification activity, pHi and dpH well described the time course of metabolic activity, cultivability, and viability in a single analysis.  相似文献   

15.
Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.  相似文献   

16.
Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on l-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the l-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and l-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific l-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific l-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific l-lysine yield by 6 and 56%, respectively. In addition to l-lysine, significant amounts of pyruvate, l-alanine and l-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve l-lysine production by engineering the l-lysine biosynthetic pathway. This study is dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday.  相似文献   

17.
NAD-dependent aminoaldehyde dehydrogenase (AMADH, EC 1.2.1.-) from Avena shoots was purified by DEAE Sephacel, hydroxyapatite, 5′-AMP Sepharose 4B, Mono Q, and TSK-GEL column chromatographies to homogeneity by the criterion of native PAGE. SDS–PAGE yielded a single band at a molecular mass of 55 kDa. IEF studies showed a band with a pI value of 5.3. In contrast to AMADHs from other species, the TSK-GEL chromatography showed that Avena AMADH exists as a monomer in the native state. The purified enzyme catalyzed the oxidations of 3-aminopropionaldehyde (APAL), 4-aminobutyraldehyde (ABAL) N-(3-aminopropyl)-4-aminobutyraldehyde (APBAL), and 4-guanidinobutyraldehyde (GBAL), but not of betaine aldehyde or indoleacetaldehyde. The K m values for APAL, ABAL, and GBAL were 1.5×10–6, 2.2×10–6, and 1.3×10–5 M, respectively. Although N-terminal amino acid sequence of Avena AMADH could not be determined due to a modification of the amino residue, the sequence of the fragment of AMADH cleaved by V8 protease showed greater similarity to the barley BADH than to the pea AMADH. Electronic Publication  相似文献   

18.
The optimal conditions of ethanol fermentation process by Zymomonas mobilis CHZ2501 were investigated. Brown rice, naked barley, and cassava were selected as representatives of the starch-based raw material commercially available for ethanol production. Considering enzyme used for saccharification of starch, the ethanol productivity with complex enzyme was higher than glucoamylase. With regards to the conditions of saccharification, the final ethanol productions of simultaneous saccharification and pre-saccharified process for 1 h were not significantly different. The result suggested that it is possible for simultaneous saccharification and fermentation as a cost-effective process for ethanol production by eliminating the separate saccharification. Additionally, the fermentation rate in early fermentation stage was generally increased with increase of inoculum volume. As the result, optimal condition for ethanol production was simultaneous saccharification and fermentation with complex enzyme and 5% inoculation. Under the same condition, the volumetric productivities and ethanol yields were attained to 3.26 g/L·h and 93.5% for brown rice, 2.62 g/L·h and 90.4% for naked barley, and 3.28 g/L·h and 93.7% for cassava, respectively.  相似文献   

19.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

20.
Volatile phenols are produced by Dekkera yeasts and are of organoleptic importance in alcoholic beverages. The key compound in this respect is 4-ethylphenol, responsible for the medicinal and phenolic aromas in spoiled wines. The microbial synthesis of volatile phenols is thought to occur in two steps, beginning with naturally occurring hydroxycinnamic acids (HCAs). The enzyme phenolic acid decarboxylase (PAD) converts HCAs to vinyl derivatives, which are the substrates of a second enzyme, postulated to be a vinylphenol reductase (VPR), whose activity results in the formation of ethylphenols. Here, both steps of the pathway are investigated, using cell extracts from a number of Dekkera and Brettanomyces species. Dekkera species catabolise ferulic, caffeic and p-coumaric acids and possess inducible enzymes with similar pH and temperature optima. Brettanomyces does not decarboxylate HCAs but does metabolise vinylphenols. Dekkera species form ethylphenols but the VPR enzyme appears to be highly unstable in cell extracts. A partial protein sequence for PAD was determined from Dekkera anomala and may indicate the presence of a novel enzyme in this genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号