首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell differentiation lineage in the prostate   总被引:12,自引:0,他引:12  
Prostatic epithelium consists mainly of luminal and basal cells, which are presumed to differentiate from common progenitor/stem cells. We hypothesize that progenitor/stem cells are highly concentrated in the embryonic urogenital sinus epithelium from which prostatic epithelial buds develop. We further hypothesize that these epithelial progenitor/stem cells are also present within the basal compartment of adult prostatic epithelium and that the spectrum of differentiation markers of embryonic and adult progenitor/stem cells will be similar. The present study demonstrates that the majority of cells in embryonic urogenital sinus epithelium and developing prostatic epithelium (rat, mouse, and human) co-expressed luminal cytokeratins 8 and 18 (CK8, CK18), the basal cell cytokeratins (CK14, CK5), p63, and the so-called transitional or intermediate cell markers, cytokeratin 19 (CK19) and glutathione-S-transferase-pi (GSTpi). The majority of luminal cells in adult rodent and human prostates only expressed luminal markers (CK8, CK18), while the basal epithelial cell compartment contained several distinct subpopulations. In the adult prostate, the predominant basal epithelial subpopulation expressed the classical basal cell markers (CK5, CK14, p63) as well as CK19 and GSTpi. However, a small fraction of adult prostatic basal epithelial cells co-expressed the full spectrum of basal and luminal epithelial cell markers (CK5, CK14, CK8, CK18, CK19, p63, GSTpi). This adult prostatic basal epithelial cell subpopulation, thus, exhibited a cell differentiation marker profile similar to that expressed in embryonic urogenital sinus epithelium. These rare adult prostatic basal epithelial cells are proposed to be the progenitor/stem cell population. Thus, we propose that at all stages (embryonic to adult) prostatic epithelial progenitor/stem cells maintain a differentiation marker profile similar to that of the original embryonic progenitor of the prostate, namely urogenital sinus epithelium. Adult progenitor/stem cells co-express both luminal cell, basal cell, and intermediate cell markers. These progenitor/stem cells differentiate into mature luminal cells by maintaining CK8 and CK18, and losing all other makers. Progenitor/stem cells also give rise to mature basal cells by maintaining CK5, CK14, p63, CK19, and GSTpi and losing K8 and K18. Thus, adult prostate basal and luminal cells are proposed to be derived from a common pleuripotent progenitor/stem cell in the basal compartment that maintains its embryonic profile of differentiation markers from embryonic to adult stages.  相似文献   

2.
CD44 is a polymorphic transmembrane glycoprotein that binds hyaluronan and growth factors. Multiple isoforms of the protein can be generated by alternative splicing but little is known about the expression and function of these isoforms in normal development and differentiation. We have investigated the expression of CD44 during normal prostate epithelial cell differentiation. A conditionally immortalized prostate epithelial cell line, Pre2.8, was used as a model system. These cells proliferate at 33C but at 39C stop dividing and undergo changes consistent with early stages of cell differentiation. During the differentiation of these cells, the expression of the CD44 isoform v3-v10 was upregulated. Two layers of epithelial cells can clearly be distinguished in the human prostate, a basal layer expressing keratins 5/14 and a luminal layer expressing keratins 8/18. In prostate tissue the v3-v10 isoform was found predominantly in basal cells but also in keratin 14-negative, keratin 19-positive cells intermediate between the two layers. CD44 v3-v10 was also expressed in other keratin 14-negative prostate tissues, the ejaculatory ducts and prostatic urethra. Therefore, CD44 v3-v10 may be important as a cell surface marker for differentiating cells in the prostate epithelium.  相似文献   

3.
The therapeutic potential of IFN-gamma in prostatic cancer has been documented in several reports, although no immunohistochemical studies of this factor and its receptors in the prostate have been reported. The aim of the present study was to investigate the expression of IFN-gamma and its receptor components (IFN-gamma-Ralpha and IFN-gamma-Rbeta) in normal prostate, benign prostatic hyperplasia (BPH) and prostatic cancer (PC), as well as the possible relationship between this factor and the products of the p53 gene (the wild and mutant forms) and the oncogene c-myc, by means of immunochemical techniques (Western blot, ELISA, and quantification of immunostaining in histological sections). In normal prostate, IFN-gamma and its two receptors were expressed in the basal cells of the epithelium and some stromal cells. In BPH specimens, immunostaining of basal epithelial cells was significantly increased for IFN-gamma and its a receptor, whereas stromal cell immunostaining was significantly increased for IFN-gamma and its b receptor. In addition, columnar epithelial cells immunostained for IFNbeta-Rbeta. PC specimens differed from BPH specimens in the significantly increased immunostaining of epithelial cells for IFN-gamma and its two receptors, and the immunostaining of columnar epithelial cells for IFN-gamma-Ralpha. Immunodetection of wild-p53 was weak and limited to some stromal cells in the three types of specimens. Immunostainings for both mutant-p53 and c-myc were negative in normal prostate, and positive in the epithelium and stromal cells of both BPH and PC specimens. Immunostaining intensity in PC was significantly higher than in BPH. These observations suggest that the expression of both mutant-p53 and c-myc, together with other factors, might be involved in the development of prostatic hyperplasia and neoplasia, while the increased expression of IFN-gamma and its receptors could be regarded as an attempt, although insufficient, to inhibit the uncontrolled cell proliferation.  相似文献   

4.
5.
6.
Cultured prostatic epithelial cells have been extensively studied as a model of prostate biology. What is the lineage relationship of the cultured cells to the epithelial cell types in tissue? How different are cultured cells derived from tumor tissue to those derived from benign tissue? Expression of cluster designation (CD) cell surface molecules has been shown to be useful in characterizing cells according to lineage. A CD profile was therefore generated for cultured human prostatic epithelial cells and compared with those previously established for basal and luminal epithelial cells in the prostate. Presence of CD44, CD49b, CD49f, and CD104 and absence of CD57 suggests that cultured cells were derived from basal cells of prostatic tissues. However, expression of certain CD antigens characteristic of luminal epithelial cells was also observed in subpopulations of cultured cells. The pattern of CD antigens in cultured cells reflects a phenotype similar to that of transit-amplifying cells that have been described in the prostate. Several CD antigens were found expressed by both cultured prostatic epithelial and stromal cells, and are probably associated with cell proliferation. The CD profiles of cultured epithelial cell strains derived from normal compared with malignant tissues were notably similar to each other and to that of the prostate cancer cell line PC-3. We conclude that cells in culture retain expression of certain lineage-characteristic CD antigens. Furthermore, CD antigens can define subpopulations of cells with differential gene expression.  相似文献   

7.
8.
Role of p63 and basal cells in the prostate   总被引:6,自引:0,他引:6  
The prostate contains two major epithelial cell types - luminal and basal cells - both of which develop from urogenital sinus epithelium. The cell linage relationship between these two epithelial types is not clear. Here we demonstrate that luminal cells can develop independently of basal cells, but that basal cells are essential for maintaining ductal integrity and the proper differentiation of luminal cells. Urogenital sinus (UGS) isolated from p63(+/+) and p63(-/-) embryos developed into prostate when grafted into adult male nude mice. Prostatic tissue that developed in p63(-/-) UGS grafts contained neuroendocrine and luminal cells, but basal cells were absent. Therefore, p63 is essential for differentiation of basal cells, but p63 and thus basal cells are not required for differentiation of prostatic neuroendocrine and luminal epithelial cells. p63(-/-) prostatic grafts also contained atypical mucinous cells, which appeared to differentiate from luminal cells via activation of Src. In the response to castration, regression of p63(-/-) prostate was inordinately severe with almost complete loss of ducts, resulting in the formation of residual cystic structures devoid of epithelium. Therefore, basal cells play critical roles in maintaining ductal integrity and survival of luminal cells. However, regressed p63(-/-) prostate did regenerate in response to androgen administration, indicating that basal cells were not essential for prostatic regeneration.  相似文献   

9.
An intermediate population has been identified among prostate glands called transiently amplifying (TA) cells, which are characterized by coexpression of basal and luminal cytokeratins (CKs), high proliferation, and lack of p27 expression. These cells are rare in the normal adult prostate and increase in pretumoral conditions, but their importance in the developing gland remains unknown. We analyzed fetal prostates for the expression of CKs (5/6, 18, 19) and factors involved in proliferation and apoptosis: p63, Ki67, p27, epidermal growth factor (EGFR), Bcl2, androgen receptor (AR). Immunostaining was performed on a tissue microarray, including 40 prostates from fetuses aged 13-42 weeks and normal prostate tissue from 10 adults. In both solid buds and the basal compartment of canalized glands, cells expressed p63, CK5/6, CK19, CK18, BCL2, EGFR and were p27 negative. Luminal cells of fetal canalized glands continue to express CK19, EGFR, and BCL2, without p27 expression. In contrast, adult epithelial luminal cells showed diffuse AR and p27 expression, without CK19, BCL2, and EGFR staining. Proliferation was high and diffuse in fetal glands and rare and restricted to basal cells in adult glands. These results indicate that most fetal epithelial prostatic cells exhibit the phenotype of TA cells, suggesting their regulatory function in prostate development.  相似文献   

10.
Monospecific antibodies to mouse epidermal keratins were generated in rabbits and guinea pigs by injecting synthetic peptides of unique keratin sequences. The sequences were deduced from nucleotide sequences of cDNA clones representing basal (K14) and suprabasal (K1 and K10) cell-specific and hyperproliferative (K6) keratins of both the type-I and type-II subclasses. By applying single-and double-label immunofluorescence analysis, the expression of keratin peptides was analyzed in cultured keratinocytes maintained in the basal or suprabasal cell phenotypes. These cell types were selected by growth in medium containing 0.05 mM Ca2+ (basal cell) or 1.4 mM Ca2+ (suprabasal cell). The cultured basal cells expressed K6 and K14, but less than 1% expressed K1 and K10. Within a few hours after being placed in 1.4 mM Ca2+, K1 expression was observed, and by 24 h, 10%-17% of the cells expressed K1. K10 expression appeared to lag behind K1 expression, with only 5%-10% of cells in 1.4 mM Ca2+ exhibiting K10 immunoreactivity. Double-labeling studies indicated that virtually all K10-positive cells also expressed K1, while only about one-half of the K1-positive cells expressed K10. The treatment of basal cells with retinoic acid at pharmacological concentrations prevented the expression of K1 and K10 when cells were challenged by 1.4 mM Ca2+. Similarly, the introduction of the v-rasH oncogene into basal cells by a defective retroviral vector prevented the expression of suprabasal keratins in 1.4 mM Ca2+ medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Keratins are cytoplasmic intermediate filament proteins preferentially expressed by epithelial tissues in a site-specific and differentiation-dependent manner. The complex network of keratin filaments in stratified epithelia is tightly regulated during squamous cell differentiation. Keratin 14 (K14) is expressed in mitotically active basal layer cells, along with its partner keratin 5 (K5), and their expression is down-regulated as cells differentiate. Apart from the cytoprotective functions of K14, very little is known about K14 regulatory functions, since the K14 knockout mice show postnatal lethality. In this study, K14 expression was inhibited using RNA interference in cell lines derived from stratified epithelia to study the K14 functions in epithelial homeostasis. The K14 knockdown clones demonstrated substantial decreases in the levels of the K14 partner K5. These cells showed reduction in cell proliferation and delay in cell cycle progression, along with decreased phosphorylated Akt levels. K14 knockdown cells also exhibited enhanced levels of activated Notch1, involucrin, and K1. In addition, K14 knockdown AW13516 cells showed significant reduction in tumorigenicity. Our results suggest that K5 and K14 may have a role in maintenance of cell proliferation potential in the basal layer of stratified epithelia, modulating phosphatidylinositol 3-kinase/Akt-mediated cell proliferation and/or Notch1-dependent cell differentiation.  相似文献   

12.
The antigen Ki-67, which is associated with cell proliferation, has been demonstrated to be useful in predicting the development of human tumors. The objective of this study was to evaluate the prognostic utility of this biomarker in pre-malignant and malignant lesions of the prostate. A total of 162 prostate biopsies taken from patients diagnosed for benign prostatic hyperplasia (BPH, n=49), low grade prostatic intraepithelial neoplasia (LGPIN, n=53), high grade prostatic intraepithelial neoplasia (HGPIN, n=25) and carcinoma (CAR, n=35), were studied. Immunohistochemistry for Ki-67 was carried out on all the samples and the number of labeled cells was semi-quantitatively evaluated (weak, moderate or intense). In the non-invasive lesions, the presence of Ki-67-positive cells in the luminal layer of the epithelium was evaluated qualitatively as positive or negative. The correlation between the immunolabeling for Ki-67 and the histological diagnosis showed highly significant differences between BPH and CAR, LGPIN and CAR and HGPIN and CAR, with no significant differences being found among the other groups. Analysis of the immunolabeling in luminal cells of non-invasive lesions showed an increase in accordance with the increase in the degree of histological lesion, the greatest percentage being obtained in the HGPIN lesions (88.0%), with significant differences among all the groups. Bearing in mind that Ki-67 is a prognostic biomarker for cell proliferation, our results demonstrating the immunolabeling of Ki-67 in the luminal compartment of non-invasive lesions having the potential to evolve to malignancy, may have prognostic implications.  相似文献   

13.
Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. Using a transgenic cell ablation approach, we found in our previous study that cells expressing Notch1 are crucial for prostate early development and re-growth. Here, we further define the role of Notch signaling in regulating prostatic epithelial cell growth and differentiation using biochemical and genetic approaches in ex vivo or in vivo systems. Treatment of developing prostate grown in culture with inhibitors of gamma-secretase/presenilin, which is required for Notch cleavage and activation, caused a robust increase in proliferation of epithelial cells co-expressing cytokeratin 8 and 14, lack of luminal/basal layer segregation and dramatically reduced branching morphogenesis. Using conditional Notch1 gene deletion mouse models, we found that inactivation of Notch1 signaling resulted in profound prostatic alterations, including increased tufting, bridging and enhanced epithelial proliferation. Cells within these lesions co-expressed both luminal and basal cell markers, a feature of prostatic epithelial cells in predifferentiation developmental stages. Microarray analysis revealed that the gene expression in a number of genetic networks was altered following Notch1 gene deletion in prostate. Furthermore, expression of Notch1 and its effector Hey-1 gene in human prostate adenocarcinomas were found significantly down-regulated compared to normal control tissues. Taken together, these data suggest that Notch signaling is critical for normal cell proliferation and differentiation in the prostate, and deregulation of this pathway may facilitate prostatic tumorigenesis.  相似文献   

14.
Immunoreaction to TGF-alpha was limited to the basal epithelial cells of focal areas in the normal prostates. In benign prostatic hyperplasia (BPH) the immunostained areas were more widespread and immunolabelling was observed in both basal and columnar (secretory) cells of the epithelium. Some cells in the connective tissue stroma were also stained. In prostatic adenocarcinoma, epithelial immunostaining was even more extensive and intense than in BPH, and some stromal cells were also stained. Epidermal growth factor (EGF) immunostaining was only present in some basal cells in normal prostates. In BPH, this immunoreaction was strong in the basal cells and even stronger in the secretory cells. In prostatic cancer, the intensity of epithelial cell immunoreactivity was intermediate between that of normal prostates and that of BPH specimens. EGF-receptor immunostaining was focal and located in the basal cells in normal prostates. In BPH, labelling was also localized in basal cells but extended to wider areas. Some stromal cells appeared weakly labelled. In the prostatic carcinoma, both basal and columnar cells appeared stained and the number of immunolabelled stromal cells was higher than in BPH. The results presented suggest that, in normal conditions, EGF and TGF-alpha act as autocrine growth factors for the basal cells of the prostatic epithelium. In BPH this action is maintained and, in addition, the columnar cells start to secrete both factors which are bound by the basal cell receptors, giving rise to a paracrine regulation which probably overstimulates basal cell proliferation. In prostatic carcinoma, besides these regulatory mechanisms, the acquisition of EGF-receptors by the secretory cells develops an autocrine regulation which might induce their proliferation.  相似文献   

15.
The nail is a continuous skin appendage. Cells located around the nails, which display coordinated homeostatic dynamics and release a flow of stem cells in response to regeneration, have been identified in mice. However, very few studies regarding human nail stem cells exist in the literature. Using specimens isolated from humans, we detected an unreported population of cells within the basal layer of postnatal human nail proximal folds (NPFs) and the nail matrix around the nail root. These cells were multi-expressing and expressed stem cell markers, such as keratin 15 (K15), keratin 14 (K14), keratin 19 (K19), CD29, CD34, and leucine-rich repeat-containing G protein-coupled receptor 6 (Lgr6). These cells were very similar to mouse nail stem cells in terms of cell marker expression and their location within the nail. We also found that the putative nail stem cells maintained their abundance with advancing age, but cell proliferation and nail growth rate were decreased on comparison of young and aged specimens. To summarize, we found a putative population of stem cells in postnatal human nails located at NPFs and the nail matrix. These cells may have potential for cell differentiation and be capable of responding to injury, and were retained, but may be hypofunctional during aging.  相似文献   

16.
Keratin expression in hamster tracheal epithelium was investigated during organ culture in serum-free, hormone-supplemented medium using monospecific monoclonal antibodies. Generally, tracheal basal cells expressed keratins detected by antibodies RCK102 and RCK103, while columnar epithelial cells were stained positively by RGE53, RCK103, RCK105 and HCK19. Metaplastic squamous cell foci reacted with antibodies RKSE60, RCK103 and HCK19. Early metaplastic alterations were more clearly RKSE60-positive than the mature lesions. In the vitamin A-depleted tracheas basal cells were clearly RCK102-positive. Superficial cells in the central part of areas of squamous metaplasia induced by cigarette smoke condensate expressed the basal cell keratins, and were negative for the columnar cell keratin 18 detected by the RGE53 antibody. This finding suggests that in cigarette smoke condensate-induced squamous metaplasia basal cells play an important role. The mucus-producing cells at the edges of metaplastic squamous cell foci expressed the keratins specific to columnar cells. Cigarette smoke condensate exposure accelerated epithelial keratinization compared to the vitamin A-depleted epithelium. It was concluded that not only small mucous granule cells, but also basal cells are involved in the development and maintenance of induced squamous metaplasia in tracheal epithelium. Furthermore, in vitro vitamin A-depleted epithelium did not coexpress vimentin in addition to the different keratins.  相似文献   

17.
Using five different monoclonal antibodies to vimentin, we have examined the expression of vimentin in cryostat sections and serum-free cultures of normal human breast tissue. In cryostat sections, myoepithelial cells as well as stromal cells showed immunoreactivity to vimentin, irrespective of the antibody used. In contrast, luminal epithelial cells were negative for vimentin, but positive for keratin K18. In culture, myoepithelial cells showed immunoreactivity to vimentin from their first appearance in monolayer. Moreover, a fraction of luminal epithelial cells expressed vimentin in addition to keratin K18. We found a clear, reversible correlation between proliferation, determined by incorporation of [3H]-TdR, and induction of vimentin in the luminal epithelial cells. Thus, in growth-stimulated cultures on a medium containing cholera toxin (CT), epidermal growth factor (EGF), transferrin (Tf), hydrocortisone (H) and insulin (I), the fraction of vimentin-positive luminal epithelial cells increased, while it decreased within 14 days from approximately 36% to 3% on a medium containing CT and EGF, only. We therefore conclude: (1) vimentin is constantly expressed in myoepithelial cells in situ and in vitro, and (2) expression of vimentin in luminal epithelial cells in vitro is not a result of monolayer cultivation as such, but rather associated with the increased growth rate seen in culture.  相似文献   

18.
The unique cytokeratin K19 specifically expresses in simple epithelial cells, basal cells of non-keratinized stratified squamous epithelium, epidermal cells during the embryonic stage and squamous carcinoma cells, but it is not expressed in adult epidermis. Interestingly, when epidermal cells are cultured in vitro, K19 is re-expressed in the supra-basal layer. K19 expression was used as a marker for epidermal cell growth and differentiation. In order to clarify the temporal and spatial sequential expression in cultured keratinocyte, two-stage human keratinocyte culture systems were used to examine K19 expression in keratinocytes in a proliferation and differentiation stages through immunoblotting and immunohistochemistry assay. According to our results, K19 was not expressed in cultured human keratinocytes in the proliferation stage but was re-expressed in keratinocytes three days after the cultured medium was changed to a differentiation medium. Immunohistochemical observation revealed that K19 was persistently expressed in the supra-basal layer of cultured keratinocytes during first three weeks of culturing, but none was detectable in the basal cell layer. When keratinocytes were cultured with an "inserted cultured dish," K19 was persistently expressed in all layers of keratinocytes nourished by medium both from an inner chamber and an outer chamber. The different expression of K19 in these two different culture systems seemed to indicate that down regulation of K19 expression in keratinocyte was related to the direction of medium supply.  相似文献   

19.
Peng W  Bao Y  Sawicki JA 《Transgenic research》2011,20(5):1073-1086
To establish a method for efficient and relatively easy isolation of a cell population containing epithelial prostate stem cells, we developed two transgenic mouse models, K5/CFP and K18/RFP. In these models, promoters of the cytokeratin 5 (Krt5) and the cytokeratin 18 (Krt18) genes regulate cyan and red fluorescent proteins (CFP and RFP), respectively. CFP and RFP reporter protein fluorescence allows for visualization of K5+ and K18+ epithelial cells within the cellular spatial context of the prostate gland and for their direct isolation by FACS. Using these models, it is possible to test directly the stem cell properties of prostate epithelial cell populations that are positively selected based on expression of cytoplasmic proteins, K5 and K18. After validating appropriate expression of the K5/CFP and K18/RFP transgenes in the developing and adult prostate, we demonstrate that a subset of CFP-expressing prostate cells exhibits stem cell proliferation potential and differentiation capabilities. Then, using prostate cells sorted from double transgenic mice (K5/CFP + K18/RFP), we compare RNA microarrays of sorted K5+K18+ basal and K5K18+ luminal epithelial cells, and identify genes that are differentially expressed. Several genes that are over-expressed in K5+ cells have previously been identified as potential stem cell markers. These results suggest that FACS isolation of prostate cells from these mice based on combining reporter gene fluorescence with expression of potential stem cell surface marker proteins will yield populations of cells enriched for stem cells to a degree that has not been attained by using cell surface markers alone.  相似文献   

20.
Stem cells of the human prostate gland have not yet been identified utilizing a structural biomarker. We have discovered a new prostatic epithelial cell phenotype-expressing cytokeratin 6a (Ck6a+ cells). The Ck6a+ cells are present within a specialized niche in the basal cell compartment in fetal, juvenile and adult prostate tissue, and within the stem cell-enriched urogenital sinus. In adult normal prostate tissue, the average abundance of Ck6a+ cells was 4.9%. With proliferative stimuli in the prostate organ culture model, in which the epithelial-stromal interaction was maintained, a remarkable increase of Ck6a expression was noticed to up to 64.9%. The difference in cytokeratin 6a expression between the normal adult prostate and the prostate organ culture model was statistically significant (p<0.0001). Within the prostate organ culture model the increase of cytokeratin 6a-expressing cells significantly correlated with increased proliferation index (r = 0.7616, p = 0.0467). The Ck6a+ cells were capable of differentiation as indicated by their expression of luminal cell markers such as ZO-1 and prostate specific antigen (PSA). Our data indicate that Ck6a+ cells represent a prostatic epithelial stem cell candidate possessing high potential for proliferation and differentiation. Since the development of benign prostatic hyperplasia and prostate carcinogenesis are disorders of proliferation and differentiation, the Ck6a+ cells may represent a major element in the development of these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号