首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of these studies was to determine the properties of the membrane-bound cytidylyltransferase in adult lung and to assess the relationship between the microsomal enzyme and the two forms of cytidylyltransferase in cytosol. Microsomes, isolated by glycerol density centrifugation, contained significantly less cytidylyltransferase than microsomes isolated by differential centrifugation (11.6 +/- 3.2 vs. 30 +/- 11 nmol/min per g lung). The released activity was recovered as H-form cytidylyltransferase. Cytidylyltransferase activity was not removed from microsomes by washing of the microsomal pellet with homogenizing buffer. Triton X 100 extracted all of the cytidylyltransferase from microsomes. The extracted activity was similar to H-form. Chlorpromazine dissociated microsomal enzyme to L-form. Chlorpromazine has been shown previously to dissociate H-form to L-form. These results suggested that microsomal cytidylyltransferase existed in a form similar if not identical to cytosolic H-form. In vitro translocation experiments demonstrated that the L-form of cytidylyltransferase was the species which binds to microsomal membranes. Triton X 100 extraction of microsomes from translocations experiments removed the bound enzyme activity. Glycerol density fractionation indicated that the activity in the Triton extract was H-form cytidylyltransferase. We concluded that the active lipoprotein form of cytidylyltransferase (H-form) is the membrane-associated form of cytidylyltransferase in adult lung; that it is formed after the L-form binds to microsomal membranes and that cytosolic H-form is released from the membrane.  相似文献   

2.
The purpose of the present study was to determine the mechanisms by which glucocorticoids increase the activity of CTP: cholinephosphate cytidylyltransferase, a key enzyme required for the synthesis of surfactant phosphatidylcholine. Lung cytidylyltransferase exists as an inactive, light form low in lipids (L-form) and an active, heavy form high in lipid content (H-form). In vivo, fatty acids stimulate and aggregate the inactive L-form to the active H-form. In vivo, betamethasone increases the amount of H-form while decreasing the amount of L-form in fetal lung. There is also a coordinate increase in total free fatty acids in the H-form. In the present study, we used gas chromatography–mass spectrometry to measure the fatty acid species associated with the H-forms in fetal rat lung after the mothers were treated with betamethasone (1 mg/kg). In vivo, betamethasone increased the total amount of free fatty acids associated with the H-form by 62%. Further, the hormone selectively increased the mass of myristic and oleic acids in H-form by 52 and 82%, respectively. However, betamethasone produced the greatest increase in the amount of H-form linoleic acid, which increased fourfold relative to control. In vitro, each of the fatty acids increased L-form activity in a dose-dependent manner; however, linoleic acid was the most potent. Linoleic and oleic acids also effectively increased L-form aggregations. These observations suggest that in vivo glucocorticoids elevate the level of specific fatty acids which convert cytidylyltransferase to the active form. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The enzymes responsible for the biosynthesis of phosphatidylglycerol, CTP:phosphatidate cytidylyltransferase, CDP-diacylglycerol: glycerophosphate phosphatidyltransferase and phosphatidylglycerophosphate phosphatase demonstrated a coordinate increase in activity in fetal rat lung at term when the demand for pulmonary surfactant increases. The activity of CTP:cholinephosphate cytidylyltransferase, the enzyme responsible for CDP-choline production also increased in the perinatal period. The activity of cholinephosphate cytidylyltransferase in fetal and neonatal cytosol was stimulated by the addition of phosphatidylglycerol but no effect was noted with cytosol from adult lung. These results are consistent with the suggestion that the activity of cholinephosphate cytidylyltransferase, a potential rate-determining enzyme in pulmonary phosphatidylcholine synthesis, may be regulated in the perinatal period both through an activation by phosphatidylglycerol and by an increase in total enzyme units.  相似文献   

4.
The activity of the low molecular weight form of cytidylyltransferase from fetal lung cytosol and adult liver cytosol was stimulated more by phosphatidylcholine-oleic acid (1:1 molar ratio) vesicles than by phosphatidylglycerol vesicles. Phosphatidylcholine alone did not stimulate the activity, while oleic acid alone produced only slight stimulation. Vesicles prepared from phosphatidylinositol, phosphatidylglycerol-cholesterol (2:1) and phosphatidylglycerol-phosphatidylcholine (1:1) all stimulated the activity to the same extent. Phosphatidylcholine-oleic acid vesicles (molar ratio 2:1) produced less stimulation than 1:1 vesicles. Phosphatidylcholine-palmitic acid vesicles (2:1) were about 50% as active as the corresponding phosphatidylcholine-oleic acid vesicles. All vesicles were in the size range of small unilamellar vesicles as judged by Sephacryl S-1000 chromatography. Stimulation also occurred when phosphatidylcholine vesicles and oleic acid were added separately to the assay. The stimulation by phospholipid vesicles was correlated with the ability of the vesicles to bind cytidylyltransferase, determined by sucrose density centrifugation of the enzyme-vesicles mixtures. We conclude that the stimulation of soluble cytidylyltransferase occurs through binding of the enzyme to anionic membrane surfaces. Suitable anionic membranes can be prepared either from anionic phospholipids, or by the addition of anionic lipids (unesterified fatty acids or phosphatidylglycerol) to phosphatidylcholine.  相似文献   

5.
The activity of the low molecular weight form of cytidylyltransferase from fetal lung cytosol and adult liver cytosol was stimulated more by phosphatidylcholine-oleic acid (1:1 molar ratio) vesicles than by phosphatidylglycerol vesicles. Phosphatidylcholine alone did not stimulate the activity, while oleic acid alone produced only slight stimulation. Vesicles prepared from phosphatidylinositol, phosphatidylglycerol-cholesterol (2:1) and phosphatidylglycerol-phosphatidylcholine (1:1) all stimulated the activity to the same extent. Phosphatidylcholine-oleic acid vesicles (molar ratio 2:1) produced less stimulation than 1:1 vesicles. Phosphatidylcholine-palmitic acid vesicles (2:1) were about 50% as active as the corresponding phosphatidylcholine-oleic acid vesicles. All vesicles were in the size range of small unilamellar vesicles as judged by Sephacryl S-1000 chromatography. Stimulation also occurred when phosphatidylcholine vesicles and oleic acid were added separately to the assay. The stimulation by phospholipid vesicles was correlated with the ability of the vesicles to bind cytidylyltransferase, determined by sucrose density centrifugation of the enzyme-vesicles mixtures. We conclude that the stimulation of soluble cytidylyltransferase occurs through binding of the enzyme to anionic membrane surfaces. Suitable anionic membranes can be prepared either from anionic phospholipids, or by the addition of anionic lipids (unesterified fatty acids or phosphatidylglycerol) to phosphatidylcholine.  相似文献   

6.
CTP : phosphocholine cytidylyltransferase activity exists in both the microsome and cytosol fractions of adult lung, 36 and 59%, respectively. Although these enzyme activities are stimulated in vitro by added lipid activators (i.e. phosphatidylglycerol), there are significant levels of activity in the absence of added lipid. We have removed endogenous lipid material from microsome and cytosol preparations of rat lung by rapid extraction with isopropyl ether. The extraction procedure did not cause any loss of cytidylyltransferase activity in the cytosol. After the extraction the enzyme was almost completely dependent upon added lipid activator. Isopropyl ether extraction of microsome preparations produced a loss of 40% of the cytidylyltransferase activity, when measured in the presence of added phosphatidylglycerol. Lipid material extracted into isopropyl ether restored the cytidylyltransferase activity in cytosol. The predominant species of enzyme activator in the isopropyl ether extracts was fatty acid. A variety of naturally occurring unsaturated fatty acids stimulated the cytidylyltransferase to the same extent as phosphatidylglycerol. Saturated fatty acids were inactive.  相似文献   

7.
Lung cytosolic cholinephosphate cytidylyltransferase is activated by lipids. We examined the lipid activation pattern as a function of development in rabbit lung from 27 days gestation through term (31 days) and in the adult. The enzyme in both the fetal and adult cytosol was dependent on lipids for activity. Extraction of the cytosol with acetone/butanol virtually abolished cytidylyltransferase activity, but the activity could be restored on addition of lipids extracted with chloroform/methanol from additional cytosol. Cytosolic phospholipids from the fetal lung reactivated cytidylyltransferase but both neutral lipids and phospholipids from the adult were required. The lipids had the same effect on cytidylyltransferase activity in delipidated cytosol from either the fetus or adult so the difference in activation pattern was attributable to the lipids rather than the protein. There was a shift from the fetal to the adult lipid activation pattern as development progressed. Further, there was a significant correlation between cytidylyltransferase activities in intact cytosols from developing lung and activities in delipidated cytosol in the presence of lipids from the same animals. Although these data suggest that lipids regulate cytosolic cytidylyltransferase activity in developing lung their physiological significance remains to be established.  相似文献   

8.
We examined the effect of fatty acids on phosphatidylcholine synthesis and cytidylyltransferase activity in Hep G2 cells. Treatment of Hep G2 cells with oleic acid caused an increase in the incorporation of [methyl-14C]choline into phosphatidylcholine and a corresponding decrease in radioactivity in choline phosphate using a pulse-chase procedure. This result is consistent with a fatty acid-induced increase in the cytidylyl-transferase step in the choline pathway. We measured cytidylyltransferase activity in membrane fractions and in cytosol (100,000 x g supernatant or soluble enzyme released by digitonin). The activity increased in both membrane and cytosol. Thus, an increase in total activity occurred. Cytidylyltransferase protein determined by Western blot immunoassay increased after oleic acid treatment. Immunotitration of cytidylyltransferase protein also indicated that an increase in enzyme protein resulted from oleic acid treatment. Cycloheximide did not prevent the oleic acid-induced increase in cytidylyltransferase activity. The increase in enzyme activity was apparent when we measured the activity in the presence or absence of lipid activators. Separation of cytosolic cytidylyltransferase into H- and L-forms showed that the increase in cytosolic activity was due to an increase in H-form. The amount of L-form did not change. We interpret these results to suggest that fatty acid treatment of Hep G2 cells promoted the formation of active cytidylyltransferase (H-form) from a preexisting inactive form. The increased activity was distributed between membranes and the lipoprotein form in cytosol (H-form).  相似文献   

9.
Two forms of CTP:phosphocholine cytidylyltransferase were identified in rat liver cytosol by gel filtration chromatography. The low molecular weight form (L form) is the major form in fresh cytosol. The enzyme associates into a high molecular weight form (H form) upon storage of the cytosol at 4 degrees C. Aggregation of the purified L form of cytidylyltransferase is caused by total rat liver lipids, neutral lipids, diacylglycerol, or phosphatidylglycerol. Diacylglycerol was the only lipid isolated from the rat liver that caused aggregation of the purified enzyme. Although the addition of diacylglycerol to the cytosol did not change the amount of aggregation of the enzyme, a 2.5-fold increase in H form was observed in cytosol pretreated with phospholipase C, or in cytosol from rats fed a high cholesterol diet. In both of these cytosolic preparations, the concentration of diacylglycerol was elevated twofold. Phosphatidylglycerol did not seem to affect the association of the enzyme in cytosol since it is present in very low concentrations in the rat liver cytosol, and its degradation in cytosol by a specific phospholipase did not affect the rate of aggregation. The results suggest that diacylglycerol in an appropriate form is required for association of cytidylyltransferase in rat liver cytosol.  相似文献   

10.
E Cayanis  O Greengard  C Iliescu 《Enzyme》1980,25(6):382-386
The isozyme pattern and total activity of adenylate kinase were studied in normal adult and fetal human and rat tissues using starch gel electrophoresis. Three adenylate kinase isoenzymes were identified in human tissues. Although normal adult lung exhibited higher adenylate kinase activity than did its fetal or neoplastic variant, isozyme patterns in the three types of tissues were indistinguishable from each other and from that in fetal human liver. The pattern of these three isozymes in rat lung (as in spleen) also did not change between fetal and adult life. However, adult kidney and heart of this species did appear to contain isozymes not present in fetal life. Brain (both adult and fetal) was striking different from all the other tissues in that it contained only one adenylate kinase isozyme. The total adenylate kinase activity per gram of adult rat liver, kidney and lung was significantly higher than in the cognate fetal organs, whereas that in brain or spleen did not change with age. The activity in adult heart (similar to the fetal one) was higher than in any other tissue examined.  相似文献   

11.
The reaction catalyzed by CTP:phosphocholine cytidylyltransferase in the reverse direction, i.e. the formation of CTP and phosphocholine from CDP-choline and pyrophosphate, is slightly faster than the reaction in the forward direction. The reverse reaction is optimal at 2 mM pyrophosphate and 6 mM Mg2+, in both fetal and adult preparations. The apparent substrate Km values for phosphocholine, CDP-choline, and pyrophosphate are similar in the fetal and adult forms of the enzyme. The enzyme activity is separated into two forms by gel filtration. The enzyme from adult lung exists as a high molecular weight species, ranging in size from 5 X 10(6) to 50 X 10(6). The enzyme from fetal lung exists as a 190,000 molecular weight species and is totally dependent upon added anionic phospholipid for activity in both the forward and reverse direction. The addition of phosphatidylglycerol gives maximal activity, while phosphatidylinositol or cardiolipin produce about 60 to 70% of the maximal activity. Enzyme activation is accompanied by an aggregation of the enzyme. A sonicated preparation of phosphatidylglycerol is a more efficient activator than a preparation mixed on a Vortex mixer (KA = 30 micronM) and also converts a larger proportion of enzyme from fetal lung into a high molecular weight species. The enzyme from adult lung can be dissociated into a form in fetal lung. The dissociated species can be converted back to a high molecular weight form in the presence of phosphatidylglycerol.  相似文献   

12.
The subcellular forms of cytidylyltransferase (EC 2.7.7.15) in rat lung, rat liver, Hep G2 cells, A549 cells and alveolar Type II cells from adult rats were separated by glycerol density centrifugation. Cytosol prepared from lung, Hep G2 cells, A549 cells and alveolar Type II cells contained two forms of the enzyme. These species were identical to the L-Form and H-Form isolated previously from lung cytosol by gel filtration. Liver cytosol contained only the L-Form. Rapid treatment of Hep G2 cells with digitonin released all of the cytoplasmic cytidylyltransferase activity. The released activity was present in both H-Form and L-Form. The molecular weight of L-Form was determined from sedimentation coefficients and Stokes radius values to be 97,690 +/- 10,175. Thus, the L-Form appears to be a dimer of the Mr 45,000 catalytic subunit. The f/f degrees value of 1.5 indicated that the protein molecule has an axial ratio of 10, assuming a prolate ellipsoid shape. The estimated molecular weight of the H-Form was 284,000 +/- 25,000. The H-Form was dissociated into L-Form by incubation of cytosol at 37 degrees C. Triton X-100 (0.1%) and chlorpromazine (1.0 mM) also dissociated the H-Form into L-Form. Western blot analysis indicated that both forms contained the catalytic subunit. An increase in Mr 45,000 subunit coincided with the increase in cytidylyltransferase activity in L-Form, which resulted from the dissociated of H-Form. The L-Form was dependent on phospholipid for activity. The H-Form was active without lipid. Phosphatidylinositol was present in the H-Form isolated from Hep G2 cells. The phosphatidylinositol dispersed when the H-Form was dissociated into L-Form. Phosphatidylinositol and phosphatidylglycerol cause L-Form to aggregate into a form similar to H-Form. Phosphatidylcholine/oleic acid (1:1 molar ratio) and oleic acid also aggregated the L-Form. Phosphatidylcholine did not produce aggregation. We conclude that the H-Form is the active form of cytidylyltransferase in cytoplasm. The H-Form appears to be a lipoprotein consisting of an apoprotein (L-Form dimer of the Mr 45,000 subunit) complexed with lipids. A change in the relative distribution of H-Form and L-Form in cytosol would alter the cellular activity and thus may be important in the regulation of phosphatidylcholine synthesis.  相似文献   

13.
Fetal lung fatty-acid synthase and choline-phosphate cytidylyltransferase activities are increased by glucocorticoids. There is evidence that the hormone increases synthesis of fatty-acid synthase but only increases the catalytic activity of the cytidylyltransferase. Free fatty acids and a number of phospholipids have been reported to stimulate cytidylyltransferase activity in several organs, including the lung. We have addressed the question of whether glucocorticoid induction of fatty-acid synthase mediates the stimulatory effect of the hormone on choline-phosphate cytidylyltransferase activity. Explants of 18-day fetal rat lung were cultured for 48 h with dexamethasone and inhibitors of de novo fatty acid biosynthesis (agaric acid and hydroxycitric acid) being included in the medium for the final 20 h. Dexamethasone increased the activities of fatty acid synthase and choline-phosphate cytidylyltransferase by 84% and 60%, respectively. Agaric acid and hydroxycitric acid completely abolished the stimulatory effect of the hormone on cytidylyltransferase but not on fatty-acid synthase. The inhibitors had no effect on cytidylyltransferase activity in control cultures. Fetal lung choline-phosphate cytidylyltransferase can be maximally stimulated by inclusion of phosphatidylglycerol in the assay mixture and under this condition, cytidylyltransferase activity in control and dexamethasone-treated cultures in the presence and absence of the inhibitors were all increased to the same level. Therefore, the inhibitors did not diminish the capacity of cytidylyltransferase to be fully activated. We suggest that the glucocorticoid induction of fatty-acid synthase in fetal lung results in increased synthesis of fatty acids which in turn, either as free acids or after incorporation into phospholipids, activate choline-phosphate cytidylyltransferase.  相似文献   

14.
Cholinephosphate cytidylyltransferase (CTP : cholinephosphate cytidylyltransferase, EC 2.7.7.15) is located in both the microsomal and supernatant fractions of adult lung when the tissue is homogenized in 0.145 M NaCl. The activity is located predominantly in the supernatant fraction in fetal lung. Cholinephosphate cytidylyltransferase in the supernatant from fetal lung is stimulated 4- to 6-fold by the additions of total lung lipid. Serine phosphoglycerides and inositol phosphoglycerides specifically caused stimulation whereas choline phosphoglycerides and ethanolamine phosphoglycerides produced no stimulation. Lysophosphatidylcholine cause some stimulation, but only at high concentrations. A number of detergents were investigated. All produced inhibition except for the ampholytic detergent, miranol H2M which was not inhibitory. None of the detergents produced any stimulation of activity. Cytidylyltransferase activity in fetal lung when assayed in the absence of lipid is about 25% of the adult. The activity when assayed in the presence of lipid is equal or slightly higher than adult levels. The activity, measured without added phospholipid, increases 5- to 6-fold within 12 h after birth, to values higher than in the adult. The activity, measured in the presence of phospholipid, increased almost linearly from -2 day until +1 day. There is an inverse relationship between the concentration of phospholipid in the fetal lung supernatant and the degree of lipid stimulation. Chromatographic experiments with Biogel A 1.5 columns have shown that cytidylyltransferase can exist in two molecular sizes, a small molecular size that requires phospholipid for activity, and a larger molecular weight species which does not require the addition of phospholipid for activity. Fetal lung has a higher proportion of the low molecular weight form than adult lung. The small molecular weight species can be converted to the larger molecular weight form by the addition of phospholipids.  相似文献   

15.
Phosphatidylglycerol and oleic acid had differential effects on cytidylyltransferase activity in cytosol and microsomes. The low-molecular-weight cytidylyltransferase in cytosol was stimulated more by phosphatidylglycerol than by oleic acid, whereas microsomal activity was stimulated more by oleic acid than by phosphatidylglycerol. Microsomal activity was stimulated by several unsaturated fatty acids but was not stimulated by saturated fatty acids. Bovine serum albumin decreased cytidylyltransferase activity in microsomes in the presence or absence of oleic acid but did not alter the activity measured in the presence of phosphatidylglycerol. The addition of oleic acid to albumin/microsome mixtures in amounts exceeding the binding capacity of albumin lead to complete recovery of the oleic acid stimulation. The addition of oleic acid to postmitochondrial supernatants resulted in a translocation of cytidylyltransferase activity from cytosol to microsome. The magnitude of the shift was severalfold greater with fetal preparations than adult. The free fatty acid content of microsomes increased coincident with the translocation. Bovine serum albumin, added to postmitochondrial supernatants, caused a release of cytidylyltransferase from microsomes to cytosol and a corresponding decrease in microsomal free fatty acid content. The amount of cytidylyltransferase activity in microsomes increased shortly after birth. The increase was accompanied by an increase in free fatty acid content of the microsomes. The increase in cytidylyltransferase activity and free fatty acids which occurred in vivo following birth was nearly identical to that obtained by adding oleic acid to postmitochondrial supernatants from fetal lung. We conclude that free fatty acids may affect the intracellular activity of cytidylyltransferase by promoting the translocation of inactive cytosolic forms to microsomes as well as by stimulating microsomal bound activity.  相似文献   

16.
Phosphatidylcholine synthesis in type II pneumocytes is stimulated by inclusion of phosphatidylglycerol and other phospholipids in the culture medium (Gilfillan, A.M., Chu, A.J. and Rooney, S.A. (1984) Biochim. Biophys. Acta 794, 269-273). We have now examined the effect of phosphatidylglycerol in the medium on enzymes of de novo phosphatidylcholine synthesis in adult rat type II cells. Activities of choline kinase, cholinephosphate cytidylyltransferase and cholinephosphotransferase in homogenates of whole lung and type II cells were generally similar. Phosphatidate phosphatase activity in type II cells, however, was only 16% that in whole lung. Addition of phosphatidylglycerol (10 microM) to the culture medium had no effect on choline kinase, cholinephosphotransferase or phosphatidate phosphatase activities in type II cells but it increased the activity of cholinephosphate cytidylyltransferase by 56%. Since it is known that cholinephosphate cytidylyltransferase is stimulated in vitro by addition of phospholipids to the assay mixture, we also measured its activity in the presence of sufficient phosphatidylglycerol (1.1 mM) to maximally stimulate in vitro. Even under these conditions cholinephosphate cytidylyltransferase activity in type II cells cultured in the presence of phosphatidylglycerol was 32% greater than in control cells. These data show that the stimulatory effect of phospholipid in the culture medium on phosphatidylcholine synthesis in type II cells is mediated by increased cholinephosphate cytidylyltransferase activity. The mechanism of increased cytidylyltransferase activity remains to be elucidated but it is not due to direct in vitro activation by the phospholipid.  相似文献   

17.
We have investigated the mechanism by which estrogen stimulates phosphatidylcholine synthesis in fetal rabbit lung. The hormone increased the activity of cholinephosphate cytidylyltransferase in the 105 000 X g supernatant fraction but had no effect on the activities of this enzyme in the homogenate or other subcellular fractions. Although microsomal cytidylyltransferase has been reported to regulate phosphatidylcholine synthesis in other systems, and translocation of the enzyme from cytosol to microsomes has been reported in association with increased phosphatidylcholine synthesis, we found no evidence of this in the case of estrogen-stimulated phosphatidylcholine synthesis in the fetal lung. Cytosolic cytidylyltransferase activity was dependent on phospholipids. Extraction with acetone/butanol drastically reduced its activity as well as the stimulatory effect of estrogen. The activity and the effect of estrogen were restored on re-addition of lipids extracted with chloroform/methanol from additional supernatants. Fractionation of the total lipids revealed that the stimulatory effect was entirely associated with the phospholipids; neutral lipids and glycolipids did not stimulate. Treatment of the phospholipid fraction with phospholipase C abolished the stimulatory effect. The stimulatory effect of estrogen, however, could not be attributed to any individual phospholipid species but appeared to require the entire phospholipid mixture. We conclude that estrogen stimulates fetal lung phosphatidylcholine synthesis by increasing the activity of cytosolic cytidylyltransferase and this activation in turn is mediated by cytosolic phospholipids.  相似文献   

18.
Immunoprecipitation of the phenylalanine hydroxylase formed by translation of rat liver RNA in a rabbit reticulocyte cell-free protein synthesis system was used to examine the origin of the molecular weight heterogeneity of the enzyme. Sodium dodecyl sulfate-polyacrylamide electrophoresis of the immunoprecipitated products showed that in most cases a single specifically immunoprecipitated polypeptide was produced which corresponded to the higher molecular weight (H) form of phenylalanine hydroxylase (Mr = 50,000). The identity of the product was confirmed by immunological competition and peptide mapping. RNA from other rats, however, coded for both the H-form and the lower molecular weight (L) form of phenylalanine hydroxylase or for only the L-form. The evidence suggests that the L-form derives from a different mRNA, rather than by proteolysis of the H-form, an interpretation which is supported by the isolation of the lower form of phenylalanine hydroxylase from livers of some rats.  相似文献   

19.
CTP:cholinephosphate cytidylyltransferase activities were compared in saline homogenates of immature fetal (15-16 weeks gestation) and adult human lung. There were no differences in subcellular enzyme distribution, in Vmax activity, or in the phosphatidylglycerol-mediated stimulation of soluble enzyme activity. These results provide no support for a developmental translocation of cytidylyltransferase from a cytosolic to a microsomal location in human lung, such as that proposed to accompany the maturation of pulmonary surfactant phosphatidylcholine biosynthesis in rat. Soluble cytidylyltransferase activity from human but not rat lung was increased after manipulation in vitro. Resolution of human H form (greater than 10(3) kDa) and L form (200 kDa) enzyme by gel filtration led to an activity increase of 200%. Incubation at 37 degrees C for 2 h increased soluble enzyme recovery, although prior centrifugal removal of generated actin-rich aggregates was necessary in adult lung fractions. In contrast, 85% of soluble rat lung cytidylyltransferase was actin aggregate-associated after incubation. The apparent heteroassociation of rat and human lung enzyme with actin in the presence of poly(ethylene glycol) at 4 degrees C strongly suggested close in vitro and potential in vivo linkage. A partial co-purification of adult human lung cytidylyltransferase with actin was also consistent with this idea. We propose that some reported cytidylyltransferase translocation phenomena may be mediated by cytoskeletal interactions in vitro.  相似文献   

20.
The activity of choline-phosphate cytidylyltransferase is increased by glucocorticoids in late gestation fetal lung in association with increased phosphatidylcholine biosynthesis. Previous indirect data had suggested that the stimulatory effect of the hormone was due to activation of existing enzyme rather than synthesis of new cytidylyltransferase protein. Using a rabbit antibody raised against purified rat liver choline-phosphate cytidylyltransferase, we have now quantitated the amount of the enzyme in fetal rat lung explants cultured with and without dexamethasone. Our results show that the hormone increased the activity of the enzyme but not the amount of cytidylyltransferase protein. Thus the stimulatory effect of dexamethasone on cytidylyltransferase is due to activation of existing enzyme rather than induction of enzyme synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号