首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
春化作用相关基因FLC的研究进展   总被引:4,自引:0,他引:4  
拟南芥春化作用相关基因FLOWERING LOCUS C(FLC)属于MADS盒基因,它编码的蛋白转录因子对开花具抑制作用。春化作用通过负调控FLC的转录及蛋白表达水平,促进拟南芥的某些晚花生态型和晚花突变体开花。主要介绍了FLC基因在春化途径中的关键作用,及其春化作用通过FLC基因与其它开花途径相联系等内容。  相似文献   

2.
植物开花是从营养生长到生殖状态的重要发育转变,是多种内在因子和环境因素共同作用的结果。在拟南芥开花调控网络中,开花抑制基因FLC处于枢纽地位。FLC的表达受许多来自环境和生长发育的信号调控,主要包括:PAF1复合体、SWR1复合体成员,FRI依赖途径、自主途径和春化作用途径基因。本文主要综述了影响FLC表达的春化相关基因及天然早花突变体的研究进展,并根据最新的研究成果提出该研究领域的研究方向和重点。  相似文献   

3.
开花是植物由营养生长阶段向生殖生长阶段转变的重要过程,长时间低温处理即春化对开花起到非常重要的促进作用。春化控制的拟南芥(Arabidopsis thaliana)开花中,阻抑型转录因子FLC是重要的关节点,春化记忆依赖于对该基因的控制。何跃辉研究组之前对拟南芥的研究揭示了转录因子VAL1或VAL2可以识别负调控开花的关键基因FLC成核区的顺式DNA元件,协同PRC2复合体在春化过程中沉默FLC基因的表达,并在随后的常温下继续维持FLC基因沉默直至受精结束,使植物产生春化记忆。但在下一代中如何擦除这种记忆功能,使FLC重新被激活,以防止植物在过冬前或过冬时开花,相关机制目前并不清楚。近期,该研究组揭示了在植物胚胎发育早期一个种子特有的"先驱"转录因子参与擦除春化记忆,重新激活FLC基因的分子机制,并解析了胚胎中的基因激活传递到后胚胎发育(营养生长期)的表观遗传机理。该研究是开花领域的重要突破,为作物开花调控的生产应用提供了新思路。  相似文献   

4.
组蛋白共价修饰作为表观遗传修饰的重要部分,主要包括乙酰化和甲酰化、甲基化、磷酸化、泛素化和SUMO化等,它们形成一个复杂的网络共同调控基因的表达,其中组蛋白甲基化修饰成为研究的热点,甲基化主要发生在赖氨酸残基上。近年来,随着有关植物组蛋白赖氨酸甲基化修饰研究的不断深入,发现其通过改变自身赖氨酸残基的甲基化状态和甲基化程度,形成转录激活或者转录抑制标记,调控基因的表达,在植物开花和逆境胁迫的响应过程中起着至关重要的作用。H3组蛋白的赖氨酸甲基化修饰能够调控FLC基因和有关抗性基因的表达,具体表现为:H3K4的三甲基化促进FLC的表达,H3K27的三甲基化则抑制FLC的表达;H3K4me3作为转录激活标记,可激活PtdIns5P基因的表达,启动响应干旱的脂质合成信号通路,响应干旱胁迫;相反,H3K27me3作为一种转录抑制标记,低水平的H3K27me3诱导COR15A和ATGOLS3基因表达,它们分别编码叶绿体低温保护蛋白Cor15am和肌醇半乳糖合成酶GOLS,以抵抗寒冷胁迫。文章主要综述了植物组蛋白赖氨酸甲基化修饰参与DNA甲基化、开花过程以及应答逆境胁迫的分子机制。  相似文献   

5.
开花是高等植物发育过程中一个非常重要的转化过程,它能够保证植物的正常发育和后代的延续,并且有重要的农业价值和观赏价值[1].开花时间的调控是一个非常复杂的过程,受到自身发育信号和外部环境因素的共同影响[2-3].FLC是拟南芥开花调节过程中的中心抑制因子,其在拟南芥顶端分生组织和叶片维管束的伴胞细胞中均有表达,并且这两个部位的FLC对开花时间都有重要的调节作用[4].目前已知的多数影响开花的通路都通过调节顶端FLC的表达来调控植物开花时间,关于伴胞细胞中的FLC如何被调控的研究还非常少[1, 3]. 在动植物中都存在一类具有JmjC结构域的蛋白质,是一类保守的组蛋白脱甲基化酶[5].我们实验室最近的工作表明,JMJ18是一个受植物自身发育调节的H3K4脱甲基化酶,JMJ18主要在伴胞细胞中表达,通过特异调节伴胞细胞中的FLC调控植物开花时间[6]. Yang等[6]实验证实在体外全长的JMJ18可以特异性地以H3K4m3的多肽为底物,脱掉其上一个甲基生成H3K4m2.在拟南芥中,JMJ18主要在伴胞细胞中表达,并且表达水平受到植物自身发育进程的调控[4].JMJ18功能缺失突变体呈现弱的晚花表型,而JMJ18的超表达植株呈现明显的早花表型,说明JMJ18参与了拟南芥开花时间的调控[4].尽管多个具有JmjC结构域的组蛋白脱甲基化酶,如 JMJ14、ELF6/JMJ11、REF6/JMJ12等都参与了拟南芥开花时间的调节,但是机制都不太清楚[5, 7],并且目前没有发现可以直接调控FLC的JmjC蛋白.Yang等的实验证实JMJ18可以结合到FLC的染色质上,通过降低FLC的染色质H3K4m3和H3K4m2修饰抑制FLC表达.FLC表达水平的降低导致FT表达的释放,促进FT在伴胞细胞中积累.积累的FT从伴胞细胞进入筛管组织,进而运输到顶端分生组织,与顶端分生组织特异性表达的bZIP转录因子FD直接相互作用,通过调节下游基因SOC1和AP1调控植物开花进程(图1). 最近的研究发现,植物开花时间除了受到春化作用、自主途径、光周期途径、GA途径等调控以外,还可以通过自身年龄衡量因子miR156和其靶基因SQUAMOSA PROMOTER BINDING-LIKE (SPLs)调节开花进程[8].Yang等实验证实:JMJ18主要在韧皮部的伴胞细胞表达.并且同miR156类似,在植物营养生长时期,JMJ18随着发育进程的深入表达水平逐渐升高.SUC2启动子驱动JMJ18在维管伴胞细胞中表达时也出现早花表型并且依赖于FT.这些研究结果表明,同miR156类似,JMJ18受植物自身发育调节,也可能作为自身年龄衡量因子调控植物开花时间,不同点是JMJ18是通过组蛋白修饰直接调节FLC表达调控开花时间的自身年龄衡量因子.即可能有两条感受自身年龄的途径:miR156-SPLs和JMJ18-FLC/MAFs途径,让人感兴趣的是两个因子都是表观遗传调控因子,而且在每个途径中均是前者负调控后者,而且后者均为一个转录因子基因家族,这两个途径最后都调控FT表达.这两个途径之间的关系也是一个有待于研究的科学问题,这可能会对于我们理解自身年龄衡量因子在植物开花进程中的作用有一定的启示.  相似文献   

6.
孙琦  曲春浦  郑美珠  刘关君 《植物研究》2015,(3):363-369,377
MADS-box家族蛋白是一类重要的调控开花的转录因子,FLC是其家族成员的编码基因之一。FLC在调节开花过程,其功能的发挥受多个途径的调控。本研究利用RT-PCR方法在小黑杨雄花芽中克隆出FLC基因的全长c DNA序列Pn FLC。该基因的开放读码框为726 bp,编码241个氨基酸残基组成的分子量为27.559 k D的蛋白质,蛋白质的等电点为9.37。实时定量荧光PCR结果显示,春化能够使Pn FLC在小黑杨根、茎、叶各组织中表达量下调57.9%~84%;启动子GUS染色结果表明,Pn FLC启动子在分裂活跃的组织中活性较高。拟南芥的遗传转化结果显示,Pn FLC可以调控At AP1、At SOC1和At FT基因的表达,同时延迟拟南芥的开花时间。  相似文献   

7.
SHORT VEGETATIVE PHASE(SVP)是重要开花抑制基因,主要在营养阶段表达。SVP基因参与花分生组织的形成,并调节开花途径中的整合因子FLOWERING LOCUS T(FT)、SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1(SOC1)和FLOWERING LOCUS C(FLC)的表达,从而调控开花时间。SVP的表达受光照、温度等因素的影响。就国内外对SVP基因及同源基因的一些研究进展进行综述,并探讨其未来的研究方向。  相似文献   

8.
FLC基因表达在植物春化过程中的作用   总被引:7,自引:0,他引:7  
洪薇  曹家树 《植物学通报》2002,19(4):406-411
在对以往有关不同开花途径研究简要总结的基础上综述了FLC基因在春化过程中的作用。近期以拟南芥不同生态型和突变体为模式的研究结果表明基因FLC可能是春化反应的关键基因。研究发现 ,FLC的表达水平与植株低温处理的时间呈数量关系 ,低温处理时间越长 ,FLC的表达越弱 ,去甲基化也可能对FLC起负调控的作用。同时FLC也存在于自主开花途径中 ,与其他基因共同作用以调节植株开花时间。而FLC的表达对开花起抑制作用。一系列研究表明 ,春化的低温作用可能在于相关基因的去甲基化 ,消除了FLC对开花的抑制作用 ,从而解除赤霉素合成途径的封锁最终导致植株在一定时期开花。  相似文献   

9.
洪薇  曹家树 《植物学报》2002,19(4):406-411
在对以往有关不同开花途径研究简要总结的基础上综述了FLC基因在春化过程中 的作用。近期以拟南芥不同生态型和突变体为模式的研究结果表明基因FLC可能是春化反应的关键基因。研究发现,FLC的表达水平与植株低温处理的时间呈数量关系,低温处理时间越长,FLC的表达越弱,去甲基化也可能对FLC起负调控的作用。同时FLC也存在于自主开花途径中,与其他基因共同作用以调节植株开花时间。而FLC的表达对开花起抑制作用。一系列研究表明,春化的低温作用可能在于相关基因的去甲基化,消除了FLC对开花的抑制作用,从而解除赤霉素合成途径的封锁最终导致植株在一定时期开花。  相似文献   

10.
染色质是人类遗传信息的载体,位于染色质上的基因在不同的时空条件下的精准表达调控与DNA的可接触性和染色质相关复合物的密切关联。组蛋白是染色质的重要组成成份,组蛋白上的多种化学修饰,例如乙酰化、甲基化和磷酸化等构成组蛋白密码,实时调控染色质的开放程度及转录调节复合物与染色质的结合,导致基因转录的激活或抑制。随着高分辨率质谱和专一性化学修饰抗体制备技术的提高,一系列新型组蛋白赖氨酸酰基化修饰,例如巴豆酰化、乳酸酰化和琥珀酰化等被发现,进一步扩展了组蛋白密码的多样性,显著增加了组蛋白密码调控基因转录的复杂性。本文着重概述了新近发现的赖氨酸巴豆酰化、乳酸酰化、琥珀酰化、异丁酰化、甲基丙烯酰化和异烟酰化等新型组蛋白赖氨酸酰基化修饰的书写、阅读及擦除的动态调控分子机制,总结了这些组蛋白酰基化修饰在基因表达中的功能及调控机制,阐述了新型组蛋白酰基化修饰与人类疾病的关联,提出新型组蛋白酰基化修饰研究面临的挑战和未来研究的方向。  相似文献   

11.
目的通过比较不同细胞类型之间MafA基因转录起始区的组蛋白修饰差异,探讨组蛋白修饰对MafA基因转录表达的作用。方法采用染色质免疫共沉淀-实时定量PCR法检测小鼠胰岛素瘤β细胞(NIT-1)、NIH小鼠成纤维细胞(NIH3T3)及小鼠胚胎干细胞(mES)三者中的MafA和MLH1基因转录起始区组蛋白修饰(H3K4m3、H3K9m3和H3乙酰化)的状况。同时采用实时定量RT-PCR检测上述三种细胞各基因mRNA表达水平。分析基因的H3K4m3、H3K9m3和H3乙酰化修饰与基因表达之间的相互关系。结果 (1)以mES细胞为参照,NIT-1细胞MafA基因的转录起始区的H3K4m3修饰水平明显增高(P〈0.05),H3K9m3修饰水平明显降低(P〈0.05);NIH 3T3细胞MafA基因的转录起始区的H3K9m3修饰水平明显增高(P〈0.05),H3K4m3修饰水平明显降低(P〈0.05);(2)MafA基因的仅在NIT-1细胞表达,其表达与H3K4m3修饰存在直线相关(相关系数0.995);与H3K9m3修饰存在直线负相关(相关系数-0.751);(3)管家基因MLH1的表达与所检测组蛋白修饰无相关性。结论 H3K9m3与H3K4m3修饰能相互协调,共同调控MafA基因的表达,对胚胎干细胞向β细胞分化具有重要的意义。  相似文献   

12.
染色质的结构和组成直接影响转录因子与基因启动子的结合,并最终导致基因的活化或沉默。多年来在酵母和动物等领域的研究已经证实,起关键调节作用的转录因子表达模式的建立和维持需要染色质重塑。外界和细胞内部信号介导的染色质重塑调控基因的表达,并最终调控细胞的分化和生物个体的发育。近几年人们发现高等植物也存在与动物和酵母同源的参与染色质重塑的蛋白质因子。最近的研究结果表明,决定高等植物开花时间关键基因的表达调控就是通过外界信号影响其染色质结构实现的。  相似文献   

13.
MADS-box基因控制植物成花的分子机理   总被引:1,自引:0,他引:1  
植物花器官的发育和开花是植物生殖发育中最重要的过程,植物在长期的进化过程中产生了春化(低温)途径、自主途径、光周期途径以及不依赖于光温环境条件的赤霉素信号途径来适应多变的环境和调控植物开花过程。本文综述了模式植物拟南芥中由LEAFY(LFY)、CONSTANS(CO)、FLOWERING LOCUSC(FLC)、FLOW ERING LOCUS T(FT)和SUPPRESSOR OF OVEREXPRESSION OF CO1(SOC1)等基因构成的双子叶植物响应光温条件变化的开花调控网络;以及大麦、小麦中由VERNALIZATION1(VRN1)、VRN2、ODD-SOC2(OS2)和拟南芥CO、FT同源基因构成的禾本科植物开花调控网络。其中最重要的是转录调控因子MADS-box基因FLC、SOC1、VRN1和OS2,并发现组蛋白的乙酰化/脱乙酰化,赖氨酸的甲基化/脱甲基化在调控FLC、VRN1染色质活性状态及基因表达,从而产生开花控制的机理。这些研究发现将有助于对具有重要经济价值的单双子叶植物,通过生物技术手段改良其品种特性以应对非生物逆境,特别是低温胁迫的指导。  相似文献   

14.
核受体超家族介导基因调控的分子机制   总被引:2,自引:0,他引:2  
Wang BH 《生理科学进展》2003,34(4):369-372
核受体超家族由甾体激素、甲状腺激素、维甲酸、维生素D等化学信号的受体及配体未明的多种孤儿受体组成,该家族成员的主要功能是作为配体激活的转录因子,调控代谢、发育、生殖相关基因的表达。核受体与启动子和增强子上的激素应答元件及其它DNA序列特异性激活因子结合,而激活或阻遏靶基因的转录。核受体调控基因转录需要募集称为辅调控因子的蛋白分子,这些蛋白分子与核受体一起装配成多组分的复合物,它们可提供相关的酶促活性和脚手架功能。通过与基础转录机器的相互作用和对染色质结构的可逆性共价修饰等作用,辅调控因子调控核受体对靶基因转录的激活或阻遏。许多辅调控因子本身受到多条细胞内信号转导途径的调控。  相似文献   

15.
植物花发育的分子机理研究进展   总被引:1,自引:0,他引:1  
张云  刘青林 《植物学报》2003,20(5):589-601
花的发育分为开花决定、花的发端和花器官的发育三个阶段。植物开花由多条途径诱导,包括光周期和光质诱导、春化作用、自主途径、赤霉素诱导、碳水化合物诱导等;植物体本身也存在着开花抑制途径。各种开花诱导途径能激活花分生组织特性基因,使茎端分生组织转变为花分生组织。花器官的发育由器官特性基因决定,这些基因的精确表达需要花分生组织特性基因的激活和多个正、负调节因子的调控;另有一类基因控制着花发育的对称性。花发育机理的研究具有重要的理论意义和广泛的应用前景。  相似文献   

16.
FLC是植物成花关键抑制因子, 主要通过结合到其下游2个关键的成花促进基因(FTSOC1)启动子上而抑制二者的表达。此外, 还可以与其它调控因子结合调控开花。然而, 关于FLC在成花调控中的具体分子机制仍需深入研究。该文主要结合8条成花调控遗传途径, 梳理近年来与FLC相关的新进展, 并展望了未来的研究方向。  相似文献   

17.
植物花发育的分子机理研究进展   总被引:7,自引:1,他引:7  
张云  刘青林 《植物学通报》2003,20(5):589-601
花的发育分为开花决定、花的发端和花器官的发育三个阶段。植物开花由多条途径诱导,包括光周期和光质诱导、春化作用、自主途径、赤霉素诱导、碳水化合物诱导等;植物体本身也存在着开花抑制途径。各种开花诱导途径能激活花分生组织特性基因,使茎端分生组织转变为花分生组织。花器官的发育由器官特性基因决定,这些基因的精确表达需要花分生组织特性基因的激活和多个正、负调节因子的调控;另有一类基因控制着花发育的对称性。花发育机理的研究具有重要的理论意义和广泛的应用前景。  相似文献   

18.
组蛋白乙酰化与癌症   总被引:17,自引:0,他引:17  
由于组蛋白被修饰所引起的染色质结构的改变,在真核生物基因表达调控中发挥着重要的作用,这些修饰主要包括甲基化、乙酰化、磷酸化和泛素化等,其中组蛋白乙酰化尤为重要.组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)参与决定组蛋白乙酰化状态.HAT通常作为多亚基辅激活物复合体的一部分,催化组蛋白乙酰化,导致染色质结构的松散、激活转录;而HDAC是多亚基辅抑制物复合体的一部分,使组蛋白去乙酰化,导致染色质集缩,并抑制基因的转录. 编码这些酶的基因染色体易位易于导致急性白血病的发生.另一方面,已经确定了一些乙酰化修饰酶的基因在染色体上的位置,它们尤其倾向定位于染色体的断裂处.综述了HAT和HDAC参与的组蛋白乙酰化与癌症发生之间关系的最新进展,以期进一步阐明组蛋白乙酰化修饰酶的生物学功能以及它们在癌症发生过程中的作用.  相似文献   

19.
垂体瘤转化基因1研究进展   总被引:1,自引:0,他引:1  
垂雄瘤转化基因1(PTTG1),也被称为分离酶抑制蛋白基因,是近几年从大鼠垂体肿瘤中发现的癌基因。它不但可以与分离酶结合,使分离酶失活,从而抑制姐妹染色单体的分离,还具有转录激活活性。已有的染色质免疫共沉淀结合芯片数据显示,PTTG1不仅可以直接调控基因的转录,也可以与其他蛋白,如PTTG1结合因子(PBF)、p53、Spl、上游刺激因子1(USF1)等相互作用来调控下游基因的转录。在NIH3T3细胞中,PTTG1激活c-Mvc的转录,增强NIH3T3细胞在裸鼠体内的成瘤能力。PTTG1也能激活肿瘤细胞中成纤维细胞生长因子2(FGF2)的转录,从而促进肿瘤血管生成。PTTG1结合p53、抑制p21表达、激活周期蛋白D3的能力,提示它在凋亡、细胞周期和衰老方面廿.发挥作用。另外,PTTG1在肿瘤转移和肝癌的发生发展中也发挥着重要作用。我们简要综述了PTTG1的靶基因,及其在肝癌及肿瘤转祷中的研究进展。  相似文献   

20.
刘丹阳  徐遵涛  丁勇 《西北植物学报》2022,42(10):1621-1628
m^(6)A修饰是mRNA上含量最丰富的一种修饰,调控mRNA的命运决定。YT521-B同源性(YTH)结构域蛋白是一类典型的m^(6)A“阅读器”,能识别并结合m^(6)A,完成基因的转录后调控。为了探究拟南芥YTH结构域蛋白ECT6和ECT7的功能及其分子机制,该研究对ect 6、ect 7和ect 6 ect 7双突变体进行基因型和半定量PCR鉴定及开花表型观察,通过细胞学观察分析ECT6和ECT7的亚细胞定位,并采用qRT-PCR检测开花关键基因的表达量。结果显示:(1)ECT 6基因组包含5个外显子和4个内含子,ect 6突变体分别插入在ECT 6基因的第3和第5外显子;ECT 7基因组包含6个外显子和5个内含子,ect 7突变体分别插入在ECT 7基因的第4和第6外显子。(2)突变体ect 6和ect 7均为完全敲除的功能缺失突变体,在长日照下二者均表现出开花提前和叶片数减少。(3)在长日照和短日照下ect6 ect7双突变体均表现出开花提前和叶片数减少。(4)开花抑制基因FLC和成花素基因FT是关键的开花调控因子,qRT-PCR分析结果显示,在ect 6 ect 7双突变体中,FLC的表达水平降低,FT的表达水平升高,且春化通路基因VIN 3、VRN 2、VRN 5和自主通路基因FVE的表达水平也显著升高。(5)ECT6和ECT7均定位于细胞核和细胞质中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号