首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ArrayCyGHt is a web-based application tool for analysis and visualization of microarray-comparative genomic hybridization (array-CGH) data. Full process of array-CGH data analysis, from normalization of raw data to the final visualization of copy number gain or loss, can be straightforwardly achieved on this arrayCyGHt system without the use of any further software. ArrayCyGHt, therefore, provides an easy and fast tool for the analysis of copy number aberrations in any kinds of data format. AVAILABILITY: ArrayCyGHt can be accessed at http://genomics.catholic.ac.kr/arrayCGH/  相似文献   

2.
The Distributed Annotation System (DAS) is a protocol for easy sharing and integration of biological annotations. In order to visualize feature annotations in a genomic context a client is required. Here we present myKaryoView, a simple light-weight DAS tool for visualization of genomic annotation. myKaryoView has been specifically configured to help analyse data derived from personal genomics, although it can also be used as a generic genome browser visualization. Several well-known data sources are provided to facilitate comparison of known genes and normal variation regions. The navigation experience is enhanced by simultaneous rendering of different levels of detail across chromosomes. A simple interface is provided to allow searches for any SNP, gene or chromosomal region. User-defined DAS data sources may also be added when querying the system. We demonstrate myKaryoView capabilities for adding user-defined sources with a set of genetic profiles of family-related individuals downloaded directly from 23andMe. myKaryoView is a web tool for visualization of genomic data specifically designed for direct-to-consumer genomic data that uses publicly available data distributed throughout the Internet. It does not require data to be held locally and it is capable of rendering any feature as long as it conforms to DAS specifications. Configuration and addition of sources to myKaryoView can be done through the interface. Here we show a proof of principle of myKaryoView's ability to display personal genomics data with 23andMe genome data sources. The tool is available at: http://mykaryoview.com.  相似文献   

3.
4.
《Genomics》2020,112(1):127-134
Next generation sequencing techniques produce enormous data but its analysis and visualization remains a big challenge. To address this, we have developed Genome Annotator Light(GAL), a Docker based package for genome analysis and data visualization. GAL integrated several existing tools and in-house programs inside a Docker Container for systematic analysis and visualization of genomes through web browser. GAL takes varieties of input types ranging from raw Fasta files to fully annotated files, processes them through a standard annotation pipeline and visualizes on a web browser. Comparative genomic analysis is performed automatically within a given taxonomic class. GAL creates interactive genome browser with clickable genomic feature tracks; local BLAST-able database; query page, on-fly downstream data analysis using EMBOSS etc. Overall, GAL is an extremely convenient, portable and platform independent. Fully integrated web-resources can be easily created and deployed, e.g. www.eumicrobedb.org/cglab, for our in-house genomes. GAL is freely available at https://hub.docker.com/u/cglabiicb/.  相似文献   

5.
Yeast Exploration Tool Integrator (YETI) is a novel bioinformatics tool for the integrated visualization and analysis of functional genomic data sets from the budding yeast Saccharomyces cerevisiae. AVAILABILITY: YETI is freely available for use over the WWW, or download under license, at http://www.bru.ed.ac.uk/~orton/yeti.html  相似文献   

6.
SUMMARY: We present GenomeDiagram, a flexible, open-source Python module for the visualization of large-scale genomic, comparative genomic and other data with reference to a single chromosome or other biological sequence. GenomeDiagram may be used to generate publication-quality vector graphics, rastered images and in-line streamed graphics for webpages. The package integrates with datatypes from the BioPython project, and is available for Windows, Linux and Mac OS X systems. AVAILABILITY: GenomeDiagram is freely available as source code (under GNU Public License) at http://bioinf.scri.ac.uk/lp/programs.html, and requires Python 2.3 or higher, and recent versions of the ReportLab and BioPython packages. SUPPLEMENTARY INFORMATION: A user manual, example code and images are available at http://bioinf.scri.ac.uk/lp/programs.html.  相似文献   

7.
8.
We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/.  相似文献   

9.
We provide a Bioconductor package with quality assessment, processing and visualization tools for high-throughput sequencing data, with emphasis in ChIP-seq and RNA-seq studies. It includes detection of outliers and biases, inefficient immuno-precipitation and overamplification artifacts, de novo identification of read-rich genomic regions and visualization of the location and coverage of genomic region lists. AVAILABILITY: www.bioconductor.org.  相似文献   

10.
Interactions between chromatin segments play a large role in functional genomic assays and developments in genomic interaction detection methods have shown interacting topological domains within the genome. Among these methods, Hi-C plays a key role. Here, we present the Genome Interaction Tools and Resources (GITAR), a software to perform a comprehensive Hi-C data analysis, including data preprocessing, normalization, and visualization, as well as analysis of topologically-associated domains (TADs). GITAR is composed of two main modules: (1) HiCtool, a Python library to process and visualize Hi-C data, including TAD analysis; and (2) processed data library, a large collection of human and mouse datasets processed using HiCtool. HiCtool leads the user step-by-step through a pipeline, which goes from the raw Hi-C data to the computation, visualization, and optimized storage of intra-chromosomal contact matrices and TAD coordinates. A large collection of standardized processed data allows the users to compare different datasets in a consistent way, while saving time to obtain data for visualization or additional analyses. More importantly, GITAR enables users without any programming or bioinformatic expertise to work with Hi-C data. GITAR is publicly available at http://genomegitar.org as an open-source software.  相似文献   

11.
12.
Structural genomic variations play an important role in human disease and phenotypic diversity. With the rise of high-throughput sequencing tools, mate-pair/paired-end/single-read sequencing has become an important technique for the detection and exploration of structural variation. Several analysis tools exist to handle different parts and aspects of such sequencing based structural variation analyses pipelines. A comprehensive analysis platform to handle all steps, from processing the sequencing data, to the discovery and visualization of structural variants, is missing. The ViVar platform is built to handle the discovery of structural variants, from Depth Of Coverage analysis, aberrant read pair clustering to split read analysis. ViVar provides you with powerful visualization options, enables easy reporting of results and better usability and data management. The platform facilitates the processing, analysis and visualization, of structural variation based on massive parallel sequencing data, enabling the rapid identification of disease loci or genes. ViVar allows you to scale your analysis with your work load over multiple (cloud) servers, has user access control to keep your data safe and is easy expandable as analysis techniques advance. URL: https://www.cmgg.be/vivar/  相似文献   

13.
SUMMARY: Visual programming offers an intuitive means of combining known analysis and visualization methods into powerful applications. The system presented here enables users who are not programmers to manage microarray and genomic data flow and to customize their analyses by combining common data analysis tools to fit their needs. AVAILABILITY: http://www.ailab.si/supp/bi-visprog SUPPLEMENTARY INFORMATION: http://www.ailab.si/supp/bi-visprog.  相似文献   

14.
SUMMARY: We describe a tool, called aCGH-Smooth, for the automated identification of breakpoints and smoothing of microarray comparative genomic hybridization (array CGH) data. aCGH-Smooth is written in visual C++, has a user-friendly interface including a visualization of the results and user-defined parameters adapting the performance of data smoothing and breakpoint recognition. aCGH-Smooth can handle array-CGH data generated by all array-CGH platforms: BAC, PAC, cosmid, cDNA and oligo CGH arrays. The tool has been successfully applied to real-life data. AVAILABILITY: aCGH-Smooth is free for researchers at academic and non-profit institutions at http://www.few.vu.nl/~vumarray/.  相似文献   

15.

Neural networks such as variational autoencoders (VAE) perform dimensionality reduction for the visualization and analysis of genomic data, but are limited in their interpretability: it is unknown which data features are represented by each embedding dimension. We present siVAE, a VAE that is interpretable by design, thereby enhancing downstream analysis tasks. Through interpretation, siVAE also identifies gene modules and hubs without explicit gene network inference. We use siVAE to identify gene modules whose connectivity is associated with diverse phenotypes such as iPSC neuronal differentiation efficiency and dementia, showcasing the wide applicability of interpretable generative models for genomic data analysis.

  相似文献   

16.
We present here a software tool for combined visualization of gene-expression data and quantitative trait loci (QTL). The application is implemented as an extension to the Ensembl project and caters for a direct transition from microarray experiments of gene or protein expression levels to the genomic context of individual genes and QTL. It supports the visualization of gene clusters and the selection of functional candidate genes in the context of research on complex traits.  相似文献   

17.
Next-generation sequencing has yielded a vast amount of cattle genomic data for global characterization of population genetic diversity and identification of genomic regions under natural and artificial selection. However, efficient storage, querying, and visualization of such large datasets remain challenging. Here, we developed a comprehensive database, the Bovine Genome Variation Database (BGVD). It provides six main functionalities: gene search, variation search, genomic signature search, Genome Browser, alignment search tools, and the genome coordinate conversion tool. BGVD contains information on genomic variations comprising ~60.44 M SNPs, ~6.86 M indels, 76,634 CNV regions, and signatures of selective sweeps in 432 samples from modern cattle worldwide. Users can quickly retrieve distribution patterns of these variations for 54 cattle breeds through an interactive source of breed origin map, using a given gene symbol or genomic region for any of the three versions of the bovine reference genomes (ARS-UCD1.2, UMD3.1.1, and Btau 5.0.1). Signals of selection sweep are displayed as Manhattan plots and Genome Browser tracks. To further investigate and visualize the relationships between variants and signatures of selection, the Genome Browser integrates all variations, selection data, and resources, from NCBI, the UCSC Genome Browser, and Animal QTLdb. Collectively, all these features make the BGVD a useful archive for in-depth data mining and analyses of cattle biology and cattle breeding on a global scale. BGVD is publicly available at http://animal.nwsuaf.edu.cn/BosVar.  相似文献   

18.
19.
ArrayPlex is a software package that centrally provides a large number of flexible toolsets useful for functional genomics, including microarray data storage, quality assessments, data visualization, gene annotation retrieval, statistical tests, genomic sequence retrieval and motif analysis. It uses a client-server architecture based on open source components, provides graphical, command-line, and programmatic access to all needed resources, and is extensible by virtue of a documented application programming interface. ArrayPlex is available at http://sourceforge.net/projects/arrayplex/.  相似文献   

20.
《Genomics》2020,112(1):286-288
Synteny and collinearity analysis is a standard investigative strategy done in many comparative genomic studies to understand genomic conservation and evolution. Currently, most visualization toolkits of synteny and collinearity do not emphasize the graphical representation of the results, especially the lack of extensible format on vector graphics outputs. This limitation becomes more apparent as 3rd generation sequencing brings high-throughput data, requiring relatively higher resolution for the resulting images. We developed VGSC2, the 2nd version of the web-based vector graph toolkit for genome synteny and collinearity analysis. The updated version enables four types of plots for synteny and collinearity, and three types of plots for gene family evolutionary research. Using web-based technologies, VGSC2 provides an easy-to-use user interface to display the homologous genomic result into vector graphs such as SVG, EPS, and PDF, as well as an online editor. VGSC2 is open source and freely available for use online through the web server available at http://bio.njfu.edu.cn/vgsc2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号