首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The light-driven chloride pump halorhodopsin from Natronomonas pharaonis (phR) crystallised into the monoclinic space group C2, with a phR trimer per the asymmetric unit. Diffraction data at 2.0-Å resolution showed that the carotenoid bacterioruberin binds to crevices between adjacent protein subunits in the trimeric assembly. Besides seven transmembrane helices (A to G) that characterise archaeal rhodopsins, the phR protomer possesses an amphipathic α-helix (A′) at the N-terminus. This helix, together with a long loop between helices B and C, forms a hydrophobic cap that covers the extracellular surface and prevents a rapid ion exchange between the active centre and the extracellular medium. The retinal bound to Lys256 in helix G takes on an all-trans configuration with the Schiff base being hydrogen-bonded to a water molecule. The Schiff base also interacts with Asp252 and a chloride ion, the latter being fixed by two polar groups (Thr126 and Ser130) in helix C. In the anion uptake pathway, four ionisable residues (Arg123, Glu234, Arg176 and His100) and seven water molecules are aligned to form a long hydrogen-bonding network. Conversely, the cytoplasmic half is filled mostly by hydrophobic residues, forming a large energetic barrier against the transport of anion. The height of this barrier would be lowered substantially if the cytoplasmic half functions as a proton/HCl antiporter. Interestingly, there is a long cavity extending from the main-chain carbonyl of Lys256 to Thr71 in helix B. This cavity, which is commonly seen in halobacterial light-driven proton pumps, is one possible pathway that is utilised for a water-mediated proton transfer from the cytoplasmic medium to the anion, which is relocated to the cytoplasmic channel during the photocycle.  相似文献   

2.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were −470 mV for the 13-cis configuration of the retinal Shiff base in bR and −757 mV for the all-trans configuration in H2O, and −433 mV for the 13-cis configuration and −742 mV for the all-trans configuration in D2O. The solvent isotope effect (ΔV=V(D2O)−V(H2O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated CN part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were −507 mV for the 13-cis configuration and −788 mV for the all-trans configuration; and for the E204Q mutant they were −491 mV for the 13-cis configuration and −769 mV for the all-trans configuration. Replacement of the Glu194 or Glu204 residues by Gln weakened the electron withdrawing interaction to the protonated CN bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were −471 mV for the 13-cis configuration and −760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the CN part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   

3.
Janosi L  Gorfe A 《Biophysical journal》2010,99(9):2957-2966
The precise role of the sphingosine base trans double bond for the unique properties of sphingomyelins (SMs), one of the main lipid components in raftlike structures of biological membranes, has not been fully explored. Several reports comparing the hydration, lipid packing, and hydrogen-bonding behaviors of SM and glycerophospholipid bilayers found remarkable differences overall. However, the atomic interactions linking the double-bond geometry with these thermodynamic and structural changes remained elusive. A recent report on ceramides, which differ from SMs only by their hydroxyl headgroup, has shown that replacing the trans double bond of the sphingosine base by cis weakens the hydrogen-bonding potential of these lipids and thereby alters their biological activity. Based on data from extensive (a total 0.75 μs) atomistic molecular dynamics simulations of bilayers composed of all-trans, all-cis, and a trans/cis (4:1 ratio) racemic mixture of sphingomyelin lipids, here we show that the trans configuration allows for the formation of significantly more hydrogen bonds than the cis. The extra hydrogen bonds enabled tighter packing of lipids in the all-trans and trans/cis bilayers, thus reducing the average area per lipid while increasing the chain order and the bilayer thickness. Moreover, fewer water molecules access the lipid-water interface of the all-trans bilayer than of the all-cis bilayer. These results provide the atomic basis for the importance of the natural sphingomyelin trans double-bond conformation for the formation of ordered membrane domains.  相似文献   

4.
Crystal-structure determination of trans-O-β-D-glucopyranosyl methyl acetoacetate, C11H18O8, m.p. 186°, confirmed the trans orientation deduced previously from physical properties. The conformation of the D-glucopyranosyl group is 4C1, although the most symmetrical chair-conformer is actually 3Co. The glycosidic link is sc, with a CO anomeric bond of 1.428 Å (142.8 pm), i.e. longer than is normal in methyl β-glycopyranosides. All of the hydrogen bonding is intermolecular. The unusual optical rotations in solution can be interpreted in terms of rotameric populations that are derived from the solid-state conformers and are stabilized by intramolecular or solvent hydrogen-bonding.  相似文献   

5.
The complete VS ribozyme comprises seven helical segments, connected by three three-way RNA junctions. In the presence of Mg2+ ions, cleavage occurs within the internal loop of helix I. This requires the participation of a guanine (G638) within the helix I loop, and a remote adenine (A756) within an internal loop of helix VI. Previous structural studies have suggested that helix I docks into the fold of the remaining part of the ribozyme, bringing A756 and G638 close to the scissile phosphate to allow the cleavage reaction to proceed. We show here that while either A756C or G638A individually exhibit very low cleavage activity, a mixture of the two variants leads to cleavage of the A756C RNA, but not the G638A RNA. The rate of cleavage depends on the concentration of the VS G638A RNA, as expected for a bimolecular interaction. This regaining of cleavage activity by complementation indicates that helix I of one VS RNA can interact with another VS RNA molecule to generate a functional active site in trans.  相似文献   

6.
N6‐methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N6‐methyladenine at a key trans Hoogsteen‐sugar A·G base pair, of which half are methylated in vivo. The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5‐kDa protein and the induced folding of the RNA. Thus, the assembly of the box C/D snoRNP could in principle be regulated by RNA methylation at its critical first stage. Crystallography reveals that N6‐methylation of adenine prevents the formation of trans Hoogsteen‐sugar A·G base pairs, explaining why the box C/D RNA cannot adopt its kinked conformation. More generally, our data indicate that sheared A·G base pairs (but not Watson–Crick base pairs) are more susceptible to disruption by N6mA methylation and are therefore possible regulatory sites. The human signal recognition particle RNA and many related Alu retrotransposon RNA species are also methylated at N6 of an adenine that forms a sheared base pair with guanine and mediates a key tertiary interaction.  相似文献   

7.
X-ray diffraction and molecular model building studies of an ordered structure of thymidylyl-3′,5′-deoxyadenosine which gives fibre-type diffraction patterns, are consistent with a seven-residues per turn, left-handed structure in which the adenine of one molecule and the thymine of the next are linked together by Hoogsteen type of hydrogen bonds. The structure thus resembles a macromolecule in which units are linked together by hydrogen bonds and stabilized by base stocking. Both nucleosides in the basic molecule are in the anti conformation and both sugar rings have C3′-endo puckers. The C5′-05′ bond of the deoxyadenosine is trans relative to C4′-C3′ and the conformations about the P-03′ and P-05′ bond are gauche?, trans.  相似文献   

8.
Abstract

DNA oligonucleotides with appropriately designed complementary sequences can form a duplex in which the two strands are paired in a parallel orientation and not in the conventional antiparallel double helix of B-DNA. All parallel stranded (ps) molecules reported to date have consisted exclusively of dA · dT base pairs. We have substituted four dA · dT base pairs of a 25-nt parallel stranded linear duplex (ps-D1 · D2) with dG · dC base pairs. The two strands still adopt a duplex structure with the characteristic spectroscopic properties of the ps conformation but with a reduced thermodynamic stability. Thus, the melting temperature of the ps duplex with four dG · dC base pairs (ps-D5 · D6) is 10-16°C lower and the van't Hoff enthalpy difference ΔvH for the helix-coil transition is reduced by 20% (in NaCl) and 10% (in MgCl2) compared to that of ps-Dl · D2. Based on energy minimizations of a ps-[d(T5GA5) · d(A5CT5)] duplex using force field calculations we propose a model for the conformation of a trans dG · dC base pair in a ps helix.  相似文献   

9.
Kink turns (k-turns) are important structural motifs that create a sharp axial bend in RNA. Most conform to a consensus in which a three-nucleotide bulge is followed by consecutive G•A and A•G base pairs, and when these G•A pairs are modified in vitro this generally leads to a failure to adopt the k-turn conformation. Kt-23 in the 30S ribosomal subunit of Thermus thermophilus is a rare exception in which the bulge-distal A•G pair is replaced by a non-Watson–Crick A•U pair. In the context of the ribosome, Kt-23 adopts a completely conventional k-turn geometry. We show here that this sequence is induced to fold into a k-turn structure in an isolated RNA duplex by Mg2+ or Na+ ions. Therefore, the Kt-23 is intrinsically stable despite lacking the key A•G pair; its formation requires neither tertiary interactions nor protein binding. Moreover, the Kt-23 k-turn is stabilized by the same critical hydrogen-bonding interactions within the core of the structure that are found in more conventional sequences such as the near-consensus Kt-7. T. thermophilus Kt-23 has two further non-Watson–Crick base pairs within the non-canonical helix, three and four nucleotides from the bulge, and we find that the nature of these pairs influences the ability of the RNA to adopt k-turn conformation, although the base pair adjacent to the A•U pair is more important than the other.  相似文献   

10.
Small protein B (SmpB) is an essential molecule in trans-translation which is a universal biological pathway for protein synthesis in bacteria. Trans-translation can release stalled ribosomes from defective mRNAs and target tag-protein fragments for degradation, and then restart protein synthesis. The SmpB-tmRNA complex coordinating with other components of the trans-translation system, plays vital roles in Mycobacterium tuberculosis under both stress conditions and non-replicating conditions. Thus, elucidation of molecular details and dynamic properties of the SmpB-tmRNA interaction is a crucial step towards effectively blocking trans-translation process to shorten the duration of tuberculosis treatment. Here, we report resonance assignments for 1H, 13C and 15N of M. tuberculosis SmpB (MtSmpB, spanning residues 4–133) protein determined by a suite of 2D/3D heteronuclear NMR experiments along with predicted the secondary structure.  相似文献   

11.
The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms.  相似文献   

12.
We used the temperature-jump method to study the complex between yeast t RNAPheand Escherichia coli tRNAGlu, which have the complementary anticodons GmAA and s2UUC, respectively. The binding constant (3.6 × 105m?1 at 25 °C) is about six orders of magnitude larger than expected for two complementary trinucleotides. The association rate constant (3 × 106m?1 at 25 °C) is similar to typical values observed for oligonucleotides, so the enhanced affinity in the tRNA · tRNA complex is due entirely to a much slower dissociation than expected for a three base-pair helix. We found an association enthalpy of ?25 kcal/mol, nearly twice as large as expected for two stacking interactions in a three base-pair helix. The association entropy (?58 cal/deg per mol) is close to the expected value. The reaction occurs with a single relaxation, and therefore does not involve any slow reorganization of the tRNA molecule.We studied structural variations to investigate the origin of affinity enhancement. The following general factors are important. (1) The “loop constraint”, or closure of the two anticodon sequences into hairpin loops, accounts for about a factor 50 in the affinity. (2) “Dangling ends”, or non-complementary nucleotides at the end of the double helix contribute strongly to the affinity. (3) Modified nucleotides, like the Y base, in the dangling ends can contribute a special stabilization of up to a factor seven. These observations can be understood in terms of a model in which the short three base-pair helix is sandwiched between stacked bases and hence stabilized. The potential importance of loop-loop interactions and stacking effects for codon-anticodon bonding is emphasized. The results suggest a possible simple physical basis for the evolutionary choice of a triplet coding system.  相似文献   

13.
Relaxation data obtained previously for the double helix coil transition of oligoriboadenylates and oligoribouridylates are compared to the results of numerical calculations according to various models. In these models the helix coil transition is described by individual rate constants for the first steps of helix formation, whereas the rate constants of the following steps of helix chain growth are assumed to be uniform. The existence of various helix intermediates containing the same number of base pairs is accounted for by statistical factors. First a quasistationary treatment of a zipper model is used for an analysis of the influence of various model parameters. Then relaxation spectra are calculated including helix coil intermediates explicitly without any assumption of quasistationarity. The relaxation spectrum calculated for any chain length N comprises N—1 fast processes with time constants in the range of 0.1 to 0.5 μs and one slow process with a time constant τ depending upon the nucleotide concentration (τ is usually in the ms time range). The fast processes are associated mainly with the unzippering at helix ends and are usually characterized by relatively small amplitudes, whereas the slow process represents the overall helix coil transition usually characterized by a very large amplitude.Consideration of staggered helix series (where the different helix scries are coupled to each other by the single stranded state) leads to a spectrum of slow relaxation processes with one separate relaxation process for each helix series. It is shown that this “non-sliding” staggering zipper model is not consistent with the experimental results. The measured relaxation curves can be represented by single exponentials for nucleotide chain lengths 8 to 11 (within experimental accuracy). This is also true for conditions where several, clearly separated time constants should be expected according to the theoretical model. The experimental data suggest the existence of a direct coupling between different series of staggered helices by a chain sliding mechanism with a time constant < 1ms. Chain sliding may be explained by diffusion of helix defects along the double helix such as diffusion of small loops. A simple model calculation for the diffusion of a bulge loop assuming quasistationarity suggests a sliding time constant around 100 μs for a helix comprising 10 base pairs.Finally some thermodynamic and kinetic parameters are evaluated according to the “sliding” staggering zipper model: The negative activation enthalpy observed for helix recombination can he described using a series of nucleation parameters indicating reduced stability constants for the first three base pairs. Nucleation may usually be achieved with the formation of the third or fourth base pair depending upon the magnitude of the chain growth parameter. The rate constant of helix chain growth is around 106 s?1 at 0.05 M [Na+] and increases to about 4 × 106 s?1 at 0.17 M [Na+].  相似文献   

14.
We previously showed that sphingomyelin (SM) inhibits peroxidation of phosphatidylcholine (PC) and cholesterol. Since SM uniquely has a trans unsaturation in its sphingosine base, we investigated whether this feature is important for its antioxidant function. Substitution of the natural trans Δ4-double bond with a cis double bond (cis-SM), however, increased SM’s ability to inhibit Cu2+-mediated 16:0-18:2 PC oxidation by up to eightfold. Dihydro-SM, which lacks the double bond, was equally effective as trans-SM. In contrast to its effect in the sphingosine base, the presence of a cis double bond in the N-acyl group of trans-SM was not protective. cis-SM also inhibited the oxidation of cholesterol by FeSO4/ascorbate more efficiently than the trans isomer. The enhanced protective effect of cis-SM is selective for metal ion-promoted oxidation, and appears to arise from a decrease in the effective concentration of metal ions. These studies show that the trans double bond of SM is not essential for its antioxidant effects.  相似文献   

15.
Biosynthesis of ent-kaurene was investigated in extracts of cell suspension cultures derived from tobacco callus (Nicotiana tabacum L.), tomato callus (Solanum lycopersicum L.), and in germinating tomato seeds. Incubation of extracts derived from the two cell cultures with either isopentenyl pyrophosphate-14C or with 14C-labeled mevalonate, followed by alkaline phosphatase hydrolysis, resulted in the formation of trans-geranylgeraniol-14C and trans-farnesol-14C. The corresponding pyrophosphates of trans-geranyl-geraniol-14C and trans-farnesol-14C were also detected. No detectable amount of ent-kaurene-14C was produced by these enzymatic preparations when trans-geranylgeranyl-14C pyrophosphate served as substrate. However, copalyl-14C pyrophosphate served as a substrate for the production of ent-kaurene. Cell-free extracts derived from germinating tomato seeds catalyzed the formation of ent-kaurene-14C from mevalonate-14C, isopentenyl-14C pyrophosphate, trans-geranylgeranyl-14C pyrophosphate, and copalyl-14C pyrophosphate.  相似文献   

16.
The kinetics of reactions between cytotoxic trans-oriented iminoether platinum complexes and DNA oligonucleotides have been studied by 1D and 2D [1H, 15N] HMQC NMR spectroscopy. The results for the two isomers of the mono-iminoether compound trans-[PtCl2(NH3){E/Z-HNC(OMe)Me}] (trans-E and trans-Z) are compared with those of the bis-iminoether derivative trans-[PtCl2{E-HNC(OMe)Me}2] (trans-EE). Earlier we have shown that quite unexpectedly, trans-EE is practically inert towards a central GG residue in a 12-mer double-helical duplex. We now show that the less bulky trans-E and trans-Z compounds do bind to the interior of the duplex [5′-d(G1G2T3A4C5C6G7G8 T9A10C11C12)]2 which contains terminal and central “hot” GG site. The platination by trans-E and trans-Z is as expected most pronounced for the solvent exposed, terminal GG-step but significantly, competitive binding is also observed for the central GG-step. The rate of platination of the terminal G-sites is almost an order of magnitude larger for the oligomer than for the monomer GMP which was studied for comparison. The role of trans-platinum carrier ligands in influencing the type and rate of formation of adducts with DNA and other relevant biomolecules is discussed.  相似文献   

17.
Chloroplasts isolated from sweetclover leaves contain an enzyme which converts trans-[3-14C]cinnamic acid to 2-hydroxy-trans-[3-14C]cinnamic (o-coumaric) acid. The identity of the product has been verified by recrystallization with unlabeled o-coumaric acid to constant specific activity, and by gas-liquid cochromatography of unlabeled o-coumaric acid and the radioactive product.The enzyme has an optimum of pH 7.0 and its activity can be enhanced ~ 4-fold by adding 4 mm glucose-6-phosphate to the reaction mixture. Light can replace glucose-6-phosphate, presumably as a source of reducing power required for the hydroxylation system. It was found that approximately 50% of the hydroxylase activity is bound to the lamellar membranes, from which it can be released by sonication.  相似文献   

18.
Cadherins, Ca2+-dependent adhesion molecules, are crucial for cell-cell junctions and remodeling. Cadherins form inter-junctional lattices by the formation of both cis and trans dimers. Here, we directly visualize and quantify the spatiotemporal dynamics of wild-type and dimer mutant N-cadherin interactions using time-lapse imaging of junction assembly, disassembly and a FRET reporter to assess Ca2+-dependent interactions. A trans dimer mutant (W2A) and a cis mutant (V81D/V174D) exhibited an increased Ca2+-sensitivity for the disassembly of trans dimers compared to the WT, while another mutant (R14E) was insensitive to Ca2+-chelation. Time-lapse imaging of junction assembly and disassembly, monitored in 2D and 3D (using cellular spheroids), revealed kinetic differences in the different mutants as well as different behaviors in the 2D and 3D environment. Taken together, these data provide new insights into the role that the cis and trans dimers play in the dynamic interactions of cadherins.  相似文献   

19.
《Inorganica chimica acta》1988,153(3):175-182
Thermodynamic parameters for base binding to four atropisomers of meso-tetrakis(o-pivalamidophenyl)porphyrinatocobalt(II) were determined by spectrophotometry in toluene. The order of the affinities of the four isomers with 1-methylimidazole and pyridine is α43<cis2<trans2. The higher base affinities of the trans2 complex compared with the α4 complex are due to an increase in the binding energies of the bases, although a substantial decrease of entropy changes also occurs; the differences of thermodynamic values on both complexes are −ΔΔG = 1.49 and 1.36 kcal/mol, −ΔΔH = 3.4 and 3.1 kcal/mol and −ΔΔS = 6.4 and 6.1 eu, with 1-methylimidazole and pyridine, respectively. With saturated bases pyrrolidine and piperidine, the affinities of the trans2 complex are comparable to those of the α4 complex, and those of the cis2 complex are the lowest. The increased steric repulsion between the pickets and ligated pyrrolidine or piperidine may cancel out the stabilizing effect on the base binding to the α2 complexes. Proton NMR study suggests the preferential solvation of the four-coordinate species of the trans2 complex to that of the α4 complex. It could be concluded that the stabilization of the base binding by the pickets is attributed to an intramolecular ligand–ligand interaction between the ligated base and the pickets rather than to the inhibition of the undesirable solvation on the active sites.  相似文献   

20.
We have determined the three-dimensional (3D) structure of DNA duplex that includes tandem HgII-mediated T–T base pairs (thymine–HgII–thymine, T–HgII–T) with NMR spectroscopy in solution. This is the first 3D structure of metallo-DNA (covalently metallated DNA) composed exclusively of ‘NATURAL’ bases. The T–HgII–T base pairs whose chemical structure was determined with the 15N NMR spectroscopy were well accommodated in a B-form double helix, mimicking normal Watson–Crick base pairs. The Hg atoms aligned along DNA helical axis were shielded from the bulk water. The complete dehydration of Hg atoms inside DNA explained the positive reaction entropy (ΔS) for the T–HgII–T base pair formation. The positive ΔS value arises owing to the HgII dehydration, which was approved with the 3D structure. The 3D structure explained extraordinary affinity of thymine towards HgII and revealed arrangement of T–HgII–T base pairs in metallo-DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号