首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2–GDPNP–tRNA complex.  相似文献   

3.
We compared the nucleotide substitution pattern over the entire genome of two unique variants of the 6,300-bp selfish DNA (2 m) plasmid in Saccharomyces cerevisiae. The DNA sequence of the left-unique region is identical among 2-m variants, while the right-unique region shows substantial divergence. This chimeric pattern cannot be explained by neutral or Darwinian selection models. We propose that horizontal transmission of the 2-m plasmid coupled with a directed, polarized gene conversion maintains the DNA sequence of the left-unique region, whereas the right-unique region is subject to random drift and Darwinian selection. Correspondence to: G.H. Rank  相似文献   

4.
Phosphorylation of the subunit of eukaryotic initiation factor 2 (eIF2) is known to be an important translational control mechanism in all eukaryotes with the major exception of plants. Regulation of mammalian and yeast eIF2 activity is directly governed by specific phosphorylation on Ser-51. We now demonstrate that recombinant wheat wild-type (51S) but not mutant 51-Ala (51A) protein is phosphorylated by human PKR and yeast GCN2, which are defined eIF2 kinases. Further, only wheat wild-type eIF2 is a substrate for plant-encoded, double-stranded RNA-dependent kinase (pPKR) activity. Plant PKR and GCN2 phosphorylate recombinant yeast eIF2 51S but not the 51A mutant demonstrating that pPKR has recognition site capability similar to established eIF2 kinases. A truncated version of wild-type wheat eIF2 containing 51S but not the KGYID motif is not phosphorylated by either hPKR or pPKR suggesting that this putative eIF2 kinase docking domain is essential for phosphorylation. Taken together, these results demonstrate the homology among eukaryotic eIF2 species and eIF2 kinases and support the presence of a plant eIF2 phosphorylation pathway.  相似文献   

5.
Import-Karyopherin or Importin proteins bind nuclear localization signals (NLSs) to mediate the import of proteins into the cell nucleus. Karyopherin β2 or Kapβ2, also known as Transportin, is a member of this transporter family responsible for the import of numerous RNA binding proteins. Kapβ2 recognizes a targeting signal termed the PY-NLS that lies within its cargos to target them through the nuclear pore complex. The recognition of PY-NLS by Kapβ2 is conserved throughout eukaryotes. Kap104, the Kapβ2 homolog in Saccharomyces cerevisiae, recognizes PY-NLSs in cargos Nab2, Hrp1, and Tfg2. We have determined the crystal structure of Kapβ2 bound to the PY-NLS of the mRNA processing protein Nab2 at 3.05-Å resolution. A seven-residue segment of the PY-NLS of Nab2 is observed to bind Kapβ2 in an extended conformation and occupies the same PY-NLS binding site observed in other Kapβ2·PY-NLS structures.  相似文献   

6.
The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd substitutions enhance YKD-KD interactions in vitro, whereas Gcn substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD.  相似文献   

7.
8.
9.
10.
Protein overexpression based on introduction of multiple gene copies is well established. To improve purification or quantification, proteins are typically fused to peptide tags. In Saccharomyces cerevisiae, this has been hampered by multicopy toxicity of the TAP and GFP cassettes used in the global strain collections. Here, we show that this effect is due to the EF-1α promoter in the HIS3MX marker cassette rather than the tags per se. This promoter is frequently used in heterologous marker cassettes, including HIS3MX, KanMX, NatMX, PatMX and HphMX. Toxicity could be eliminated by promoter replacement or exclusion of the marker cassette. To our knowledge, this is the first report of toxicity caused by introduction of a heterologous promoter alone.  相似文献   

11.
12.
DNA polymerases (Pol) α, δ and ε are necessary for replication of nuclear DNA. Po1δ interacts permanently or transiently with numerous accessory proteins whose identification may shed light on the function(s) of Po18. In vitro mutagenesis was used to induce thermosensitive (ts) mutations in the DNA polymerase δ gene (POL3). We have attempted to clone two recessive extragenic suppressors of such is mutants (sdp1 for mutation pol3-14 and sdp5-1 for mutation pol3-11) by transforming thermoresistant haploid strains pol3-14 sdpl and pol3-11 sdp5-1 with wild-type genomic libraries in singlecopy or multicopy vectors. None of the thermosensitive transformants so obtained was identified as being sdp1 or sdp5-1. Instead, three genes were cloned whose products interfere with the activity of suppressors. One of them is the type 1 protein phosphatase gene, D1S2. Another is a novel gene, ASM4, whose gene product is rich in asparagine and glutamine residues.  相似文献   

13.
14.
In contrast to the previously held notion that nitrogen catabolite repression is primarily responsible for the ability of yeast cells to use good nitrogen sources in preference to poor ones, we demonstrate that this ability is probably the result of other control mechanisms, such as metabolite compartmentation. We suggest that nitrogen repression is functionally a long-term adaptation to changes in the nutritional environment of yeast cells.  相似文献   

15.
Mevalonate (MVA) pathway is the core for terpene and sterol biosynthesis, whose metabolic flux influences the synthesis efficiency of such compounds. Saccharomyces cerevisiae is an attractive chassis for the native active MVA pathway. Here, the truncated form of Enterococcus faecalis MvaE with only 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity was found to be the most effective enzyme for MVA pathway flux using squalene as the metabolic marker, resulting in 431-fold and 9-fold increases of squalene content in haploid and industrial yeast strains respectively. Furthermore, a positive correlation between MVA metabolic flux and β-alanine metabolic activity was found based on a metabolomic analysis. An industrial strain SQ3-4 with high MVA metabolic flux was constructed by combined engineering HMGR activity, NADPH regeneration, cytosolic acetyl-CoA supply and β-alanine metabolism. The strain was further evaluated as the chassis for terpenoids production. Strain SQ3-4-CPS generated from expressing β-caryophyllene synthase in SQ3-4 produced 11.86 ± 0.09 mg l−1 β-caryophyllene, while strain SQ3-5 resulted from down-regulation of ERG1 in SQ3-4 produced 408.88 ± 0.09 mg l−1 squalene in shake flask cultivations. Strain SQ3-5 produced 4.94 g l−1 squalene in fed-batch fermentation in cane molasses medium, indicating the promising potential for cost-effective production of squalene.  相似文献   

16.
Restriction fragment length polymorphism (RFLP) analyses of industrial Saccharomyces yeast DNA have identified eight 2-m plasmidsvariants that fall into two distinct types. Type-I plasmids are of unique form, whereas type-II plasmids exist in seven distinct RFLP forms. Only two different 2-m variants were observed in 35 bakers' strains analysed. One variant was the unique type-I whereas the second variant represents an ancestral form of the type-II plasmid. Sixteen of nineteen wine yeasts carried a distinctive type-II plasmid with a homeologous STB repeat whereas ale and lager yeasts had a wide range of type-II variants. Relative to nuclear and mtDNA, 2-m polymorphism is less diverse and not diagnostic for a specific strain. This 2-m DNA polymorphism is a convenient and useful addendum to nuclear and mtDNA RFLP analyses but cannot serve as the sole marker for strain identification. A tentative phylogeny of industrial S. cerevisiae yeasts is suggested with origins in bakers' yeast carrying the ancestral type-II form. Correspondence to: G. H. Rank  相似文献   

17.
The 26S proteasome is an ATP-dependent proteolytic complex found in all eukaryotes, archaebacteria, and some eubacteria. Inhibition of the 26S proteasome causes pleiotropic effects in cells, including cellular apoptosis, a fact that has led to the use of the 26S proteasome inhibitor, bortezomib, for treatment of the multiple myeloma cancer. We previously showed that in addition to the effects of proteolysis, inhibition of the 26S proteasome causes a rapid decrease in the protein synthesis rate due to phosphorylating alfa subunit of the eukaryotic translation initiation factor 2 (eIF2α) by the heme-regulated inhibitor kinase (HRI). In order to test whether inhibition of the 26S proteasome causes the same effect in cancer cells, we have investigated the influence of two commonly used proteasome inhibitors, bortezomib and MG132, on the phosphorylation status of eIF2α in B16F10 melanoma and 4T1 breast cancer cells. It was found that both of the inhibitors caused rapid phosphorylation of eIF2α. Taking into account that the Hsp70 is a critical component needed for the HRI activation and enzymatic activity, we have tested a possible participation of this protein in the eIF2α phosphorylation event. However, treatment of the cells with two structurally different Hsp70 inhibitors, quercetin and KNK437, in the presence of the proteasome inhibitors did not affect the eIF2α phosphorylation. In addition, neither protein kinase C (PKC) nor p38 mitogen-activated protein kinase (MAPK) was required for the proteasome inhibitor-induced eIF2α phosphorylation; furthermore, both the PKC inhibitor staurosporine and the p38 MAPK inhibitor SB203580 caused enchanced phosphorylation of eIF2α. Zinc(II) protoporphyrine IX (ZnPP), an inhibitor of the heme-oxygenase-1 (HO-1), which has also been previously reported to be involved in HRI activation, also failed to prevent the induction of eIF2α phosphorylation in the presence of the proteasome inhibitor bortezomib or MG132.  相似文献   

18.

Background

Protein misfolding and subsequent aggregation are hallmarks of several human diseases. The cell has a variety of mechanisms for coping with misfolded protein stress, including ubiquitin-mediated protein degradation. In fact, the presence of ubiquitin at protein aggregates is a common feature of protein misfolding diseases. Ubiquitin conjugating enzymes (UBCs) are part of the cascade of enzymes responsible for the regulated attachment of ubiquitin to protein substrates. The specific UBC used during ubiquitination can determine the type of polyubiquitin chain linkage, which in turn plays an important role in determining the fate of the ubiquitinated protein. Thus, UBCs may serve an important role in the cellular response to misfolded proteins and the fate of protein aggregates.

Results

The Q82 strain of C. elegans harbors a transgene encoding an aggregation prone tract of 82 glutamine residues fused to green fluorescent protein (Q82::GFP) that is expressed in the body wall muscle. When measured with time-lapse microscopy in young larvae, the initial formation of individual Q82::GFP aggregates occurs in approximately 58 minutes. This process is largely unaffected by a mutation in the C. elegans E1 ubiquitin activating enzyme. RNAi of ubc-22, a nematode homolog of E2-25K, resulted in higher pre-aggregation levels of Q82::GFP and a faster initial aggregation rate relative to control. Knockdown of ubc-1 (RAD6 homolog), ubc-13, and uev-1 did not affect the kinetics of initial aggregation. However, RNAi of ubc-13 decreases the rate of secondary growth of the aggregate. This result is consistent with previous findings that aggregates in young adult worms are smaller after ubc-13 RNAi. mCherry::ubiquitin becomes localized to Q82::GFP aggregates during the fourth larval (L4) stage of life, a time point long after most aggregates have formed. FLIP and FRAP analysis indicate that mCherry::ubiquitin is considerably more mobile than Q82::GFP within aggregates.

Conclusions

These data indicate that initial formation of Q82::GFP aggregates in C. elegans is not directly dependent on ubiquitination, but is more likely a spontaneous process driven by biophysical properties in the cytosol such as the concentration of the aggregating species. The effect of ubiquitination appears to be most significant in later, secondary aggregate growth.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号