首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the higher plant, Arabidopsis thaliana, histidine-to-aspartate (His-to-Asp) phosphorelay signal transduction systems play crucial roles in propagation of environmental stimuli, including plant hormones. This plant has 11 sensor His-kinases, 5 histidine-containing phosphotransfer (HPt) factors (AHPs), and 20 response regulators (ARRs). To gain new insight into the functions of these phosphorelay components, their intracellular localization was examined with use of GFP-fusion proteins, constructed for certain representatives of HPt factors (AHP2) and type-A and type-B ARRs (ARR6/ARR7 and ARR10, respectively). The results showed that AHP2 is mainly located in the cytoplasmic space, while both the types of ARRs have an ability to enter preferentially into the nuclei, if not exclusively. Together with the results from an in vitro phosphorelay assay with AHP2 and ARRs, these results are discussed, in terms of a geneal framework of the Arabidopsis His-to-Asp phosphorelay network.  相似文献   

2.
In the higher plant, Arabidopsis thaliana, histidine-to-aspartate (His-to-Asp) phosphorelay signal transduction systems play crucial roles in propagation of environmental stimuli, including plant hormones. This plant has 11 sensor His-kinases, 5 histidine-containing phosphotransfer (HPt) factors (AHPs), and 20 response regulators (ARRs). To gain new insight into the functions of these phosphorelay components, their intracellular localization was examined with use of GFP-fusion proteins, constructed for certain representatives of HPt factors (AHP2) and type-A and type-B ARRs (ARR6/ARR7 and ARR10, respectively). The results showed that AHP2 is mainly located in the cytoplasmic space, while both the types of ARRs have an ability to enter preferentially into the nuclei, if not exclusively. Together with the results from an in vitro phosphorelay assay with AHP2 and ARRs, these results are discussed, in terms of a geneal framework of the Arabidopsis His-to-Asp phosphorelay network.  相似文献   

3.
The evolutionarily-conserved histidine to aspartate (His-to-Asp) phosphorelay signal transduction is common in both prokaryotes and eukaryotes. Such a phosphorelay system is generally made up of 'a histidine (His)-kinase', 'a histidine-containing phosphotransmitter (HPt)', and 'a phospho-accepting response regulator (RR)'. In general, an HPt factor acts as an intermediate in a given multistep His-to-Asp phosphorelay. In Arabidopsis thaliana, this model higher plant has five genes (named AHP1 to AHP5), each of which seems to encode an HPt factor. Recent studies suggested that the His-to-Asp phosphorelay involving the AHP factors is at least partly implicated in signal transduction in response to cytokinin (a plant hormone). Nevertheless, the properties of AHPs have not yet been fully clarified. Here we did comparative studies of all the AHP factors, in terms of (i) expression profiles in plants, (ii) intracellular localization, (iii) ability to acquire a phosphoryl group in vitro, and (iv) ability to interact with the downstream components, ARRs (Arabidopsis response regulators). The results of this study provided us with a comprehensive view at the molecular level for understanding the functions of the AHP phosphotransmitters in the His-to-Asp phosphorelay.  相似文献   

4.
The evolutionarily-conserved histidine to aspartate (His-to-Asp) phosphorelay signal transduction is common in both prokaryotes and eukaryotes. Such a phosphorelay system is generally made up of ‘a histidine (His)-kinase’, ‘a histidine-containing phosphotransmitter (HPt)’, and ‘a phospho-accepting response regulator (RR)’. In general, an HPt factor acts as an intermediate in a given multistep His-to-Asp phosphorelay. In Arabidopsis thaliana, this model higher plant has five genes (named AHP1 to AHP5), each of which seems to encode an HPt factor. Recent studies suggested that the His-to-Asp phosphorelay involving the AHP factors is at least partly implicated in signal transduction in response to cytokinin (a plant hormone). Nevertheless, the properties of AHPs have not yet been fully clarified. Here we did comparative studies of all the AHP factors, in terms of (i) expression profiles in plants, (ii) intracellular localization, (iii) ability to acquire a phosphoryl group in vitro, and (iv) ability to interact with the downstream components, ARRs (Arabidopsis response regulators). The results of this study provided us with a comprehensive view at the molecular level for understanding the functions of the AHP phosphotransmitters in the His-to-Asp phosphorelay.  相似文献   

5.
His to Asp phosphorelay signal transduction mechanisms involve three types of widespread signaling components: a sensor His-kinase, a response regulator, and a histidine-containing phosphotransfer (HPt) domain. In Arabidopsis, several sensor His-kinases have recently been discovered (e.g., ETR1 and CKI1) through extensive genetic studies. Furthermore, a recent search for response regulators in this higher plant revealed that it possesses a group of response regulators (ARR-series), each of which exhibits the phospho-accepting receiver function. However, no signal transducer containing the HPt domain has been reported. Here we identify three distinct Arabidopsis genes (AHP1 to AHP3), each encoding a signal transducer containing a HPt domain. Both in vivo and in vitro evidence that each AHP can function as a phospho-transmitting HPt domain with an active histidine site was obtained by employing both the Escherichia coli and yeast His-Asp phosphorelay systems. It was demonstrated that AHP1 exhibits in vivo ability to complement a mutational lesion of the yeast YPD1 gene, encoding a typical HPt domain involved in an osmosensing signal transduction. It was also demonstrated that AHPs can interact in vitro with ARRs through the His-Asp phosphotransfer reaction. It was thus suggested that the uncovered sensors-AHPs-ARRs lineups may play important roles in propagating environmental stimuli through the multistep His-Asp phosphorelay in Arabidopsis.  相似文献   

6.
7.
The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins   总被引:8,自引:0,他引:8  
His-to-Asp (His-->Asp) phosphorelay mechanisms are presumably involved in propagation of certain environmental stimuli, including phytohormones, in Arabidopsis thaliana. In addition to the previously characterized His-kinases, namely, the ETR1 family of ethylene receptors, CKI1 cytokinin-sensor, and ATHK1 osomo-sensor, this higher plant has three more His-kinases (named AHK2, AHK3, and AHK4). By employing the well-known His-->Asp phosphorelay systems in both the fission yeast and Escherichia coli, evidence is presented showing that the AHK4 His-kinase has an ability to serve as a cytokinin-responsive environmental sensor. Taking advantage of this AHK4-dependent His-->Asp phosphorelay system in E. coli, a phosphorelay interaction between the Arabidopsis His-kinase and histidine-containing phosphotransmitters (AHPs) was also demonstrated for the first time.  相似文献   

8.
9.

Background  

The Arabidopsis response regulator 22 (ARR22) is one of two members of a recently defined novel group of two-component system (TCS) elements. TCSs are stimulus perception and response modules of prokaryotic origin, which signal by a His-to-Asp phosphorelay mechanism. In plants, TCS regulators are involved in hormone response pathways, such as those for cytokinin and ethylene. While the functions of the other TCS elements in Arabidopsis, such as histidine kinases (AHKs), histidine-containing phosphotransfer proteins (AHPs) and A-type and B-type ARRs are becoming evident, the role of ARR22 is poorly understood.  相似文献   

10.
Histidine (His)-to-Aspartate (Asp) phosphorelay signal transduction systems are generally made up of a "sensor histidine (His)-kinase", a "response regulator", and a "histidine-containing phosphotransmitter (HPt)". In the higher plant, Arabidopsis thaliana, results from recent intensive studies suggested that the His-to-Asp phosphorelay mechanism is at least partly responsible for propagation of environmental stimuli, such as phytohormones (e.g. ethylene and cytokinin). Here we compiled the members of the HPt family of phosphotransmitters in Arabidopsis thaliana (AHP-series, Arabidopsis HPt phosphotransmitters), based on both database and experimental analyses, in order to provide a comprehensive basis at the molecular level for understanding the function of the AHP phosphotransmitters that are implicated in the His-to-Asp phosphorelay of higher plants.  相似文献   

11.
12.
13.
14.
The Arabidopsis thaliana AHK4 histidine kinase (also known as CRE1 or WOL) acts as a cytokinin signal transducer, presumably, in concert with downstream components, such as histidine-containing phosphotransfer factors (AHPs) and response regulators (ARRs), through the histidine-to-aspartate (His-->Asp) phosphorelay. Among 10 members of the type-A ARR family, the cytokinin-induced expression of ARR15 in roots is selectively impaired in the cre1-1 mutant, which carries a mutation in the AHK4 gene, suggesting a link between this type-A response regulator and the AHK4-mediated cytokinin signal transduction in roots. To address this issue further, we characterized a T-DNA insertion mutant of ARR15, and also constructed transgenic lines (referred to as ARR15-ox) that overexpress the ARR15 gene in a manner independent of cytokinin. While the T-DNA insertion mutant (arr15-1) showed no apparent phenotype, the cytokinin-independent overexpression of ARR15 in ARR15-ox plants resulted in a reduced sensitivity toward exogenously applied cytokinin, not only in elongation of roots in plants, but also in green callus formation (or shoot formation) in explants. Cytokinin-induced expressions of certain type-A ARRs were also down-regulated in ARR15-ox plants. These results support the view that ARR15 acts as a repressor that mediates a negative feedback loop in the cytokinin and AHK4-mediated His-->Asp phosphorelay.  相似文献   

15.
His-Asp phosphorelays are evolutionary-conserved powerful biological tactics for intracellular signal transduction. Such a phosphorelay is generally made up of "sensor histidine (His)-kinases", "response regulators", and "histidine-containing (HPt) phosphotransmitters". In the higher plant, Arabidopsis thaliana, results from recent intensive studies suggested that His-Asp phosphorelays may be widely used for propagating environmental stimuli, such as phytohormones (e.g., ethylene and cytokinin). In this study, we first inspected extensively the occurrence of Arabidopsis response regulators in order to compile and characterize them. The results showed that this higher plant has, at least, 14 members of the family of response regulators that can be classified into two distinct subtypes (type-A and type-B), as judged from their structural designs, biochemical properties, and expression profiles. Comparative studies were conducted for each representative (ARR3 and ARR4 for type-A, and ARR10 for type-B). It was suggested that expression of the type-A response regulator is cytokinin-inducible, while that of the type-B response regulator appears to be not. Results from yeast two-hybrid analyses suggested that the type-B response regulator may have an ability to stably interact with a set of HPt phosphotransmitters (AHPs). These and other results will be discussed with special reference to the His-Asp phosphorelay signaling network in Arabidopsis thaliana.  相似文献   

16.
Histidine (His)-to-Aspartate (Asp) phosphorelay signal transduction systems are generally made up of a “sensor histidine (His)-kinase”, a “response regulator”, and a “histidine-containing phosphotransmitter (HPt)”. In the higher plant, Arabidopsis thaliana, results from recent intensive studies suggested that the His-to-Asp phosphorelay mechanism is at least partly responsible for propagation of environmental stimuli, such as phytohormones (e.g. ethylene and cytokinin). Here we compiled the members of the HPt family of phosphotransmitters in Arabidopsis thaliana (AHP- series, Arabidopsis HPt phosphotransmitters), based on both database and experimental analyses, in order to provide a comprehensive basis at the molecular level for understanding the function of the AHP phosphotransmitters that are implicated in the His-to-Asp phosphorelay of higher plants.  相似文献   

17.
18.
Histidine-containing phosphotransfer (HPt) factors from Arabidopsis thaliana, designated as AHPs, function most likely in concert with histidine (His)-kinases (HKs) and response regulators (RRs) in certain multistep histidine (His)-->aspartate (Asp) phosphorelays that are involved in the signal transduction mechanisms, by which plant cells appear to respond to certain hormonal stimuli, including cytokinin. Although some previous in vitro results from studies on Arabidopsis AHPs (AHP1 to AHP5) supported this hypothesis, it has not yet been proven. To this end, here we constructed transgenic plants that contained the AHP2 protein in a considerably higher amount than in wild-type plants. Such AHP2-overexpressing young seedlings were examined in comparison with wild-type plants, with special reference to hormone responses; particularly, their inhibitory effects on root elongation of plants grown on agar-plates, and also hypocotyl elongation of etiolated seedlings grown in the dark. The results of this study suggested that AHP2-overexpressing plants showed a characteristic phenotype of cytokinin-hypersensitive. These in vivo observations were best interpreted by assuming that the AHP factor(s) is somehow implicated, if not directly, in a cytokinin-mediated His-->Asp phosphorelay signaling in Arabidopsis.  相似文献   

19.
20.
Cytokinin signal transduction in plant cells   总被引:8,自引:0,他引:8  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号