首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to analyze separately the effects of cell size and age on the metabolism of rat adipose tissue, fat cells of different sizes were obtained from the same animals. The rats were 4 or 15 wk old. The results show that age as well as cell size influences the metabolic rates. At a given cell size, the basal lipolysis, the lipolytic effects of glucagon and noradrenaline, the rate of glucose incorporation into the triglycerides, and the effect of insulin on glucose metabolism were considerably increased in the young animals. Furthermore, irrespective of fat cell size the lipolytic action of glucagon was reduced in old animals. The data thus show that experiments with large fat cells from old rats and with small cells from young animals cannot be directly compared because both variables may influence metabolic reactions.  相似文献   

2.
Glucagon is a highly potent lipolytic agent in birds and a candidate for regulating premigratory and winter fattening. The seasonal role of glucagon in fat metabolism was determined by monitoring plasma glucagon, fatty acids and glucose in two groups of red-winged blackbirds; one group exposed to outside environmental conditions (September to May) and a second group maintained at summer conditions with respect to day length and temperature. The results of this investigation demonstrate significantly lower plasma glucagon (480.1 pg/ml) in birds exposed to outdoor conditions than in birds maintained at summer conditions (734.6 pg/ml) during September/October. The data are consistent with the view that low plasma glucagon in outdoor birds ensures the preservation of fat stores for autumn migration. Lower plasma free fatty acid (FFA) levels (0.35 mEq/l) in outdoor birds (vs. 0.54 mEq/l in indoor birds) in autumn may reflect the rapid transport of FFA to adipose tissue for lipogenesis resulting in a steady increase in body weight from September to January. The sharp decline in plasma FFA in indoor birds from 0.54 mEq/l in September/October to 0.28 mEq/l in January/February may be attributed to a marked decrease in food consumption, rather than a dramatic change in the rate of lipid transport from blood to muscle or adipose tissue. Glucagon injections caused a 600% increase in plasma FFA and a more modest (50%) increase in plasma glucose. This confirms the major role of glucagon in fat mobilization. Its lipolytic effects, however, can vary seasonally by way of down regulation of glucagon receptors. Down regulation of glucagon receptors in adipose tissue and the associated reduced sensitivity of adipocytes to the lipolytic action of glucagon would account for the progressive increase in weight of the birds throughout November/December when plasma glucagon levels were significantly higher (578.9 pg/ml) in outdoor birds as compared to indoor birds (436.9 pg/ml). Lower plasma glucagon levels (405.5 pg/ml) in outdoor birds in January/February (vs. 638.6 pg/ml in indoor birds) may reflect the same physiological conditions prevailing in September/October favoring the preservation of fat stores.  相似文献   

3.
W O Richter  H Robl  P Schwandt 《Peptides》1989,10(2):333-335
Glucagon, vasoactive intestinal polypeptide and secretin are strong stimulators of lipolysis in adipose tissue from laboratory animals. Yet, in human adipose tissue these data could not be confirmed under comparable experimental conditions. Using pH stat titration, an advanced in vitro test system for evaluating lipolysis, it was possible to demonstrate lipolytic activity for glucagon down to a concentration of 10(-8) mol/l. This is comparable to the minimal effective doses in rat adipose tissue and corresponds to the effect of equimolar concentrations of noradrenaline in man. Secretin with an amino acid sequence very similar to glucagon was not lipolytically active, while VIP stimulated free fatty acid release in a concentration of 10(-6) mol/l. Since the minimal effective dose of glucagon is only 30 times greater than the plasma levels a physiological significance of these finding may be suggested. The lipolytic activity of VIP seems to be only of pharmacological interest.  相似文献   

4.
The authors studied the effect of a single in vivo dose of oestradiol (OE) on adrenergic lipolysis in the epididymal adipose tissue of adult and juvenile male rats, and the effect of OE on plasma free fatty acids (FFA), cholesterol and beta-lipoprotein levels at various intervals after its administration. It was found that OE injected 24 h beforehand in vivo (s.c.), in doses of 100 and 200 micrograms X kg-1 body weight, significantly potentiated the lipid-mobilizing action of the catecholamines noradrenaline (NOR) and isoprenaline (ISO) in adult rats (the action of ISO was potentiated more intensively); in addition, the adipose tissue became more sensitive to the action of NOR, but not of ISO. Raising the dose of OE to 400 micrograms X kg-1 did not enhance the potentiation of the lipolytic action of the catecholamines any further; on the contrary, the lipid mobilizing effect of the catecholamines was potentiated less than after half this dose. Following the s.c. injection of an oily OE solution, the lipolytic effect was potentiated after more than 7 h; the potentiation was strongest after 12 h, but only as far as the maximum attainable degree of lipolysis was concerned. Potentiation of adrenergic lipolysis was found only in adult male rats. In male rats weighing 130-150 g the lipolytic effect of catecholamines (in mumol/g adipose tissue) was significantly greater than in adult animals and the pre-administration of OE did not potentiate adrenergic lipolysis any further. Determination of plasma FFA, cholesterol and beta-lipoprotein levels 1, 2, 4 and 6 hours after the s.c. injection of OE showed only nonsignificant changes (an increase in FFA and a decrease in cholesterol). The authors consider it important to distinguish between the effect of OE on catecholamine-stimulated lipolysis in depot adipose tissue and its effect on lipid metabolism. In their opinion, the dose-dependent effect of OE on muscular and metabolic adrenergic reactions could be one of the factors co-reversible for certain side reactions to steroid contraceptives.  相似文献   

5.
Visceral adipose tissue has been shown to have high lipolytic activity. The aim of this study was to examine whether free fatty acid (FFA) uptake into visceral adipose tissue is enhanced compared to abdominal subcutaneous tissue in vivo. Abdominal adipose tissue FFA uptake was measured using positron emission tomography (PET) and [18F]‐labeled 6‐thia‐hepta‐decanoic acid ([18F]FTHA) and fat masses using magnetic resonance imaging (MRI) in 18 healthy young adult males. We found that FFA uptake was 30% higher in visceral compared to subcutaneous adipose tissue (0.0025 ± 0.0018 vs. 0.0020 ± 0.0016 µmol/g/min, P = 0.005). Visceral and subcutaneous adipose tissue FFA uptakes were strongly associated with each other (P < 0.001). When tissue FFA uptake per gram of fat was multiplied by the total tissue mass, total FFA uptake was almost 1.5 times higher in abdominal subcutaneous than in visceral adipose tissue. In conclusion, we observed enhanced FFA uptake in visceral compared to abdominal subcutaneous adipose tissue and, simultaneously, these metabolic rates were strongly associated with each other. The higher total tissue FFA uptake in subcutaneous than in visceral adipose tissue indicates that although visceral fat is active in extracting FFA, its overall contribution to systemic metabolism is limited in healthy lean males. Our results indicate that subcutaneous, rather than visceral fat storage plays a more direct role in systemic FFA availability. The recognized relationship between abdominal visceral fat mass and metabolic complications may be explained by direct effects of visceral fat on the liver.  相似文献   

6.
Short-lasting hypothermia raises the FFA level in the blood and this rise is associated with increased lipid-mobilizing activity and higher lipolytic activity of the serum. Raised FFA level and increased lipid-mobilizing activity of the serum persist even when the degree of general anaesthesia is sufficient for preventing thermogenesis signs (shivering and piloerection) caused by falling body temperature. Beta-adrenergic blockade fails to abolish the effect of lipolysis activation caused by hypothermia. These observations suggest that during hypothermia in the blood of the animals appear factors stimulating lipolysis in the adipose tissue. One of these factors may stimulate tissue lipolysis independently of beta-adrenergic receptors. Insulin blocks significantly lipolytic processes in the adipose tissue of hypothermic animals, but its administration is connected with the danger of hypoglycaemia development.  相似文献   

7.
Bovine diabetogenic protein has been further purified by gel filtration yielding a fraction (Mr 25 000--28 000) having increased diabetogenic and in vitro lipolytic activity. Using rat epididymal fat pads, this fraction was shown to be lipolytic at concentrations as low as 1--10 mug/ml. The in vitro lipolytic effect was unaffected by the nutritional state of the animals, was not potentiated by dexamethasone, could be demonstrated in the presence and absence of glucose and was not mediated by alpha- and beta-adrenergic receptors. A lag phase of greater than 1 h was observed before diabetogenic protein induced lipolysis occurred, suggesting that protein synthesis might be involved. Cycloheximide (10 mug/ml), added initially, prevented the diabetogenic protein-induced lipolysis. This direct effect of the purified protein on adipose tissue helps explain the elevation of free fatty acids seen when bovine diabetogenic hormone is administered in vivo and suggests that this anterior pituitary protein may be a new lipid-mobilizing hormone.  相似文献   

8.
The effects of age and cellularity on lipolysis have been investigated in isolated epididymal fat cells from both Swiss albino mice and Sprague-Dawley rats. No significant lipolytic response to glucagon could be demonstrated with adipocytes from either young or old mice, while glycerol output was increased by this hormone with fat cells from young rats. Larger adipocytes from older mice showed significantly greater isoproterenol-stimulated lipolysis than those from younger animals if the glycerol output was expressed on a per cell basis. However, the lipolytic response per cell appeared to be equivalent in young and old rat adipocytes with either isoproterenol or ACTH-(1-24). In a complete aging study, relationships between body weight, epididymal fat pad weight and cellularity were examined covering the life span of the mouse. ACTH-(1-24)- and dibutyryl cyclic AMP-stimulated lipolysis increased with age and cell size but fell at senescence when adipocyte size diminished. Although an effect of aging per se cannot be ruled out with the experimental techniques used in the present study, a dominant influence of adipocyte size on the lipolytic process was demonstrated.  相似文献   

9.
The ability of growth hormone (GH) to inhibit the early (first hour) lipolytic response to glucagon and cAMP was investigated using chicken adipose tissue explants in vitro. In the first hour of incubation, GH inhibited glucagon, 8-bromo-3',5'-cyclic adenosine monophosphate (8-bromo-cAMP), and 1-isobutyl-3-methyl-xanthine (IBMX) induced glycerol release. The antilipolytic effect of GH was dose dependent, with inhibition of glucagon and 8-bromo-cAMP observed in the presence of as little as 100 ng/ml GH. In the fourth hour of incubation (late lipolytic response), GH (10, 100, or 1000 ng/ml) enhanced the lipolytic action of glucagon.  相似文献   

10.
Cyclic AMP, protein kinase activity and glycerol were measured in adipose tissue from fasted rats incubated with epinephrine with or without glucose. A drastic loss in the sensitivity of the adipose tissue to respond to the lipolytic action of the hormone was observed during fasting, when incubated without glucose. The addition of glucose reverses this process, and a greater lipolytic capacity was observed in the tissue of fasted rats than in fed rats. The three parameters measured were well correlated when there was epinephrine in the medium. Lipolysis is observed with glucose alone, but there was no variation in the cAMP levels nor in the protein kinase activity. These results are discussed in relation to the regulator effect of FFA, which is mobilized during starvation, on lipolysis.  相似文献   

11.
1. Plasma glucose, glycerol, free fatty acids and total lipid content of the white adipose tissue were measured in euthermic and hibernating jerboa. 2. During hibernation, plasma glucose and glycerol were low compared to the euthermic animals, whereas there was no obvious difference in plasma free fatty acids. The white adipose tissue lipid content was strongly reduced in the hibernating state. 3. The effect of lipolytic hormones (norepinephrine and glucagon) and antilipolytic hormone (insulin) on in vitro glycerol release by adipose tissue isolated from hibernating or euthermic jerboa has been studied. 4. The white adipose tissue from hibernating jerboa presented a higher sensitivity to norepinephrine and glucagon than that of euthermic jerboa; insulin did not modify either basal glycerol release or lipolysis induced by the two lipolytic hormones at low temperatures (7 degrees C) and during the rewarming (from 7 degrees C to 37 degrees C) of the tissue slices. 5. These results suggested that white adipose tissue constitutes an important source of substrates derived from lipolysis during hibernation.  相似文献   

12.
Adipose tissue lipolysis and fatty acid reesterification by liver and adipose tissue were investigated in rats fasted for 15 h under basal and calorigenic conditions. The fatty acid flux initiated by adipose fat lipolysis in the fasted rat is mostly futile and is characterized by reesterification of 57% of lipolyzed free fatty acid (FFA) back into adipose triglycerides (TG). About two-thirds of FFA reesterification are carried out before FFA release into plasma, whereas the rest consists of plasma FFA extracted by adipose tissue. Thirty-six percent of the fasting lipolytic flux is accounted for by oxidation of plasma FFA, whereas only a minor fraction is channeled into hepatic very low density lipoprotein-triglycerides (VLDL-TG). Total body calorigenesis induced by thyroid hormone treatment and liver-specific calorigenesis induced by treatment with beta, beta'-tetramethylhexadecanedioic acid (Medica 16) are characterized by a 1.7- and 1.3-fold increase in FFA oxidation, respectively, maintained by a 1.5-fold increase in adipose fat lipolysis. Hepatic reesterification of plasma FFA into VLDL-TG is negligible under both calorigenic conditions. Hence, total body fatty acid metabolism is regulated by adipose tissue as both source and sink. The futile nature of fatty acid cycling allows for its fine tuning in response to metabolic demands.  相似文献   

13.
Metabolism of adipose tissue in the fat tail of the sheep in vivo   总被引:5,自引:0,他引:5  
The metabolism of the large mass of adipose tissue constituting the fat tail of the Syrian sheep has been investigated by measuring arteriovenous concentration (A-V) differences. The tail in situ in the intact anesthetized animal, as well as the isolated tail perfused with blood through a constant flow pump oxygenator, was used. In fed animals, the adipose tissue took up glucose and ketone bodies and released lactate and free fatty acids (FFA), although in some animals uptake of FFA also occurred. After 48-144 hr of fasting, uptake of glucose and ketone bodies continued and the FFA release increased. Total lipid esters and phospholipids were not released even after food had been withheld for 6 days. Insulin increased the A-V difference and the uptake of glucose, and reduced the FFA release. Adrenaline increased the A-V difference and uptake of glucose; the simultaneous increase in serum FFA was not accompanied by an increase in A-V difference for FFA in most experiments, which suggests that this adipose tissue is relatively insensitive to the lipolytic effect of the hormone. The effect of noradrenaline was similar to that of adrenaline. Glucagon hyperglycemia was not accompanied by increase in glucose uptake in most experiments.  相似文献   

14.
Masoprocol (nordihydroguaiaretic acid), a lipoxygenase inhibitor isolated from the creosote bush, has been shown to decrease adipose tissue lipolytic activity both in vivo and in vitro. The present study was initiated to test the hypothesis that the decrease in lipolytic activity by masoprocol resulted from modulation of adipose tissue hormone-sensitive lipase (HSL) activity. The results indicate that oral administration of masoprocol to rats with fructose-induced hypertriglyceridemia significantly decreased their serum free fatty acid (FFA; P < 0.05), triglyceride (TG; P < 0.001), and insulin (P < 0.05) concentrations. In addition, isoproterenol-induced lipolytic rate and HSL activity were significantly lower (P < 0.001) in adipocytes isolated from masoprocol compared with vehicle-treated rats and was associated with a decrease in HSL protein. Incubation of masoprocol with adipocytes from chow-fed rats significantly inhibited isoproterenol-induced lipolytic activity and HSL activity, associated with a decrease in the ability of isoproterenol to phosphorylate HSL. Masoprocol had no apparent effect on adipose tissue phosphatidylinositol 3-kinase activity, but okadaic acid, a serine/threonine phosphatase inhibitor, blocked the antilipolytic effect of masoprocol. The results of these in vitro and in vivo experiments suggest that the antilipolytic activity of masoprocol is secondary to its ability to inhibit HSL phosphorylation, possibly by increasing phosphatase activity. As a consequence, masoprocol administration results in lower serum FFA and TG concentrations in hypertriglyceridemic rodents.  相似文献   

15.
We measured whole body and regional lipolytic and adipose tissue blood flow (ATBF) sensitivity to epinephrine in 8 lean [body mass index (BMI): 21 +/- 1 kg/m(2)] and 10 upper body obese (UBO) women (BMI: 38 +/- 1 kg/m(2); waist circumference >100 cm). All subjects underwent a four-stage epinephrine infusion (0.00125, 0.005, 0.0125, and 0.025 microgram. kg fat-free mass(-1). min(-1)) plus pancreatic hormonal clamp. Whole body free fatty acid (FFA) and glycerol rates of appearance (R(a)) in plasma were determined by stable isotope tracer methodology. Abdominal and femoral subcutaneous adipose tissue lipolytic activity was determined by microdialysis and (133)Xe clearance methods. Basal whole body FFA R(a) and glycerol R(a) were both greater (P < 0.05) in obese (449 +/- 31 and 220 +/- 12 micromol/min, respectively) compared with lean subjects (323 +/- 44 and 167 +/- 21 micromol/min, respectively). Epinephrine infusion significantly increased FFA R(a) and glycerol R(a) in lean (71 +/- 21 and 122 +/- 52%, respectively; P < 0.05) but not obese subjects (7 +/- 6 and 39 +/- 10%, respectively; P = not significant). In addition, lipolytic and ATBF sensitivity to epinephrine was blunted in abdominal but not femoral subcutaneous adipose tissue of obese compared with lean subjects. We conclude that whole body lipolytic sensitivity to epinephrine is blunted in women with UBO because of decreased sensitivity in upper body but not lower body subcutaneous adipose tissue.  相似文献   

16.
The effect of 2-deoxy-D-glucose on lipolytic processes in the blood and adipose tissue was studied. Rats treated with this antimetabolite showed a significant increase in serum glucose, FFA and glycerol level, as well as in the lipid mobilizing activity. On the other hand, the lipolytic activity of rat serum decreased when compared to control group. From these results it may be concluded that during hypothermia induced by administration of 2-deoxy-D-glucose intracellular, but not intravascular, lipolysis is enhanced.  相似文献   

17.
Plasma FFA responses to prolonged walking in untrained men and women   总被引:1,自引:0,他引:1  
Gender differences in plasma FFA responses to 90 min of treadmill walking at 35% VO2max were investigated in six men and six women following an overnight fast. The subjects represented average values for maximal oxygen uptake and body fat percentage for age and gender. Mean plasma FFA concentration at 45 and 90 min of exercise were significantly (P less than 0.05) higher for women (0.82 mmol X 1(-1), 0.88 mmol X 1(-1)) than men (0.42 mmol X 1(-1), 0.59 mmol X 1(-1)). Lower R values for women throughout the exercise period indicated a greater percentage fat in total metabolism than for men while the FFA/glycerol results supported greater lipolytic activity for women. The uniformity of percent fat in metabolism for women from rest to exercise showed that FFA release from adipose tissue increased rapidly with the onset of exercise which was not the case for men. Comparison of metabolic data as well as a statistical analysis (ANCOVA) controlling for the influence of VO2max and percentage body fat on FFA plasma concentration suggested that gender differences in FFA responses to prolonged submaximal exercise can be expected to occur in untrained subjects.  相似文献   

18.
1. Adipocytes isolated from epididymal adipose tissue of fed or 24 h-starved rats were incubated with a range of glucagon concentrations in the presence and absence of adenosine deaminase (4 munits/ml). 2. With adenosine deaminase present, the lipolytic response to low concentrations of glucagon (1-6 ng/ml) was considerably enhanced in cells from starved rats. 3. The effect of adenosine deaminase on basal lipolysis was altered after starvation. 4. D-3-Hydroxybutyrate (5 mM) decreased the sensitivity of lipolysis to glucagon. 5. The possible involvement of glucagon-stimulated lipolysis in the regulation of ketogenesis is briefly discussed.  相似文献   

19.
It has been shown that adipose tissue lipolytic activity is increased in endurance-trained subjects. In women, adipose tissue is extensive and it was thought interesting to confirm that endurance training increases the capacity of female adipose tissue to mobilize lipids, and moreover to more fully understand the mechanisms involved. So, biopsies of fat were obtained from the periumbilical region of 13 trained female runners (T) and 17 sedentary women (S) and the in vitro response to catecholamines of the collagenase-isolated fat cells was studied. Glycerol release, chosen as adipocyte lipolysis indicator, was measured by bioluminescence for various epinephrine and norepinephrine concentrations. In both groups, these substances provoked an increase in lipolysis, but the response was significantly higher in T. In both groups, isoproterenol increased the lipolytic activity above basal concentrations at 10(-8) M and above. Lipolytic activity in T was significantly higher (P less than 0.01) than the S control at 10(-7) M and above. Epinephrine plus propranolol decreased lipolysis in both groups, but at 10(-5) M, lipolytic activity was significantly lower in S than in T (P less than 0.05). It is concluded that in female subjects, endurance training increases the sensitivity of subcutaneous abdominal adipose tissue to the lipolytic action of catecholamines; this effect seems to be related both to a decreased efficiency of the alpha 2-adrenergic pathway and to an increased efficiency of the beta-adrenergic pathway. This latter effect seems to take place at a step beyond the receptor-adenylate cyclase system in the lipolytic cascade.  相似文献   

20.
Forskolin is a novel lipolytic agent which elevates cAMP and FFA release in rat adipocytes in a manner different from existing lipolytic factors. This effect of Forskolin is potentiated by all lipolytic hormones tested, i.e. epinephrine, ACTH, and glucagon and is also reversible. The same batch of adipocytes can be repeatedly stimulated after washing. The effective concentration of Forskolin is in the micromolar range. Its action is due to an activation of cAMP synthesis by adenylate cyclase. There is no effect on cAMP hydrolysis. In contrast to stimulation by lipolytic hormones, Forskolin-activated membrane adenylate cyclase was not further stimulated by GPP(NH)P. These results suggest that Forskolin may be a useful analytical agent in the study of adenylate cyclase mediated function in intact adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号