首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Bacillus thuringiensis isolate, 89-T-34-22, belonging to the serovar shandongiensis (H22) produced noninsecticidal and nonhemolytic proteins crystallizing into irregular-shaped parasporal inclusions. The proteins showed in vitro cytotoxicity to human cells, including cancer cells, only when activated by protease treatment. The human leukemic T (MOLT-4) cells were > 100 times more susceptible than HeLa and normal T cells to the proteins of 89-T-34-22. The cytotoxicity was dose dependent and the median effective concentration for the MOLT-4 was 3.5 microg/ml. The cytopathy induced by the 89-T-34-22 proteins was characterized by remarkable condensation of the nucleus and cell-ballooning. Five major parasporal proteins of 89-T-34-22, with molecular masses in the range of 16-160 kDa, shared no similarity with the previously reported proteins in terms of the N-terminal sequence.  相似文献   

2.
An unusual activity, associated with non-insecticidal and non-haemolytic parasporal inclusion proteins of a Bacillus thuringiensis soil isolate, designated 89-T-26-17, was characterized. The parasporal inclusion of this isolate was bipyramidal, rounded at both ends, containing proteins of 180, 150, 120, 100, and 88 kDa. No homologies with the Cry and Cyt proteins of B. thuringiensis were detected based on N-terminal sequences. Proteolytic processing of the inclusion proteins by proteinase K, trypsin, and chymotrypsin produced a major protein of 64 kDa exhibiting cytocidal activity against human leukaemic T cells and uterus cervix cancer (HeLa) cells. The protease-activated proteins showed no cytotoxicity to normal T cells.  相似文献   

3.
A 28 kDa protein that exhibits cytocidal activity specific for human leukemic T (MOLT-4) cells was purified from proteinase K-digested parasporal inclusion of a Bacillus thuringiensis serovar shandongiensis isolate. The N-terminal sequence of the protein was identical with that of the 32 kDa protein, regarded as a protoxin, of the inclusion proteins. The median effective concentration of this protein was 0.23 microg/ml against MOLT-4 cells and its specific activity was 7.9 times greater than that of the whole inclusion proteins. The 28 kDa protein induced necrosis-like cytotoxicity against MOLT-4 cells and the cytopathic effect with the passage of time was characterized by cell swelling, nuclear membrane isolation and chromatin condensation.  相似文献   

4.
The parasporal bodies of the mosquitocidal isolates of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 were compared with regard to their hemolytic and cytolytic activities and the immunological relatedness of the 28- and 65-kilodalton (kDa) proteins that occur in both subspecies. The alkali-solubilized parasporal bodies of B. thuringiensis subsp. israelensis caused 50% lysis of human erythrocytes at 1.14 micrograms/ml, whereas those of B. thuringiensis subsp. morrisoni caused similar lysis at 1.84 micrograms/ml. Preincubation of solubilized parasporal bodies with dioleolyl phosphatidylcholine significantly inhibited the hemolytic activity of both supspecies. In cytolytic assays against Aedes albopictus cells, the toxin concentrations causing 50% lysis for B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni were 1.87 and 11.98 micrograms/ml, respectively. Polyclonal antibodies raised separately against the 25-kDa protein (a tryptic digest of the 28-kDa protein) or the 65-kDa protein of B. thuringiensis subsp. israelensis cross-reacted, respectively, with the 28- and the 65-kDa proteins of B. thuringiensis subsp. morrisoni. However, neither of these antibodies cross-reacted with the 135-kDa protein of either subspecies. These results indicate that the mosquitocidal and hemolytic properties of B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 are probably due to the biologically related proteins that are present in the parasporal bodies of both subspecies. The lower hemolytic activity of the B. thuringiensis subsp. morrisoni may be due to the presence of lower levels of the 28-kDa protein in that subspecies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The parasporal bodies of the mosquitocidal isolates of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 were compared with regard to their hemolytic and cytolytic activities and the immunological relatedness of the 28- and 65-kilodalton (kDa) proteins that occur in both subspecies. The alkali-solubilized parasporal bodies of B. thuringiensis subsp. israelensis caused 50% lysis of human erythrocytes at 1.14 micrograms/ml, whereas those of B. thuringiensis subsp. morrisoni caused similar lysis at 1.84 micrograms/ml. Preincubation of solubilized parasporal bodies with dioleolyl phosphatidylcholine significantly inhibited the hemolytic activity of both supspecies. In cytolytic assays against Aedes albopictus cells, the toxin concentrations causing 50% lysis for B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni were 1.87 and 11.98 micrograms/ml, respectively. Polyclonal antibodies raised separately against the 25-kDa protein (a tryptic digest of the 28-kDa protein) or the 65-kDa protein of B. thuringiensis subsp. israelensis cross-reacted, respectively, with the 28- and the 65-kDa proteins of B. thuringiensis subsp. morrisoni. However, neither of these antibodies cross-reacted with the 135-kDa protein of either subspecies. These results indicate that the mosquitocidal and hemolytic properties of B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 are probably due to the biologically related proteins that are present in the parasporal bodies of both subspecies. The lower hemolytic activity of the B. thuringiensis subsp. morrisoni may be due to the presence of lower levels of the 28-kDa protein in that subspecies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa.  相似文献   

7.
Parasporal inclusion proteins from a total of 1744 Bacillus thuringiensis strains, consisting of 1700 Japanese isolates and 44 reference type strains of existing H serovars, were screened for cytocidal activity against human leukaemia T cells and haemolytic activity against sheep erythrocytes. Of 1684 B. thuringiensis strains having no haemolytic activity, 42 exhibited in vitro cytotoxicity against leukaemia T cells. These non-haemolytic but leukaemia cell-toxic strains belonged to several H-serovars including dakota, neoleonensis, shandongiensis, coreanensis and other unidentified serogroups. Purified parasporal inclusions of the three selected strains, designated 84-HS-1-11, 89-T-26-17 and 90-F-45-14, exhibited no haemolytic activity and no insecticidal activity against dipteran and lepidopteran insects, but were highly cytocidal against leukaemia T cells and other human cancer cells, showing different toxicity spectra and varied activity levels. Furthermore, the proteins from 84-HS-1-11 and 89-T-26-17 were able to discriminate between leukaemia and normal T cells, specifically killing the former cells. These findings may lead to the use of B. thuringiensis inclusion proteins for medical purposes.  相似文献   

8.
Mosquitocidal Bacillus thuringiensis strains show as a common feature the presence of toxic proteins with cytolytic and hemolytic activities, Cyt1Aa1 being the characteristic cytolytic toxin of Bacillus thuringiensis subsp. israelensis. We have detected the presence of another cyt gene in this subspecies, highly homologous to cyt2An1, coding for the 29-kDa cytolytic toxin from B. thuringiensis subsp. kyushuensis. This gene, designated cyt2Ba1, maps upstream of cry4B coding for the 130-kDa crystal toxin, on the 72-MDa plasmid of strain 4Q2-72. Sequence analysis revealed, as a remarkable feature, a 5' mRNA stabilizing region similar to those described for some cry genes. PCR amplification and Southern analysis confirmed the presence of this gene in other mosquitocidal subspecies. Interestingly, anticoleopteran B. thuringiensis subsp. tenebrionis belonging to the morrisoni serovar also showed this gene. On the other hand, negative results were obtained with the anti-lepidopteran strains B. thuringiensis subsp. kurstaki HD-1 and subsp. aizawai HD-137. Western analysis failed to reveal Cyt2A-related polypeptides in B. thuringiensis subsp. israelensis 4Q2-72. However, B. thuringiensis subsp. israelensis 1884 and B. thuringiensis subsp. tenebrionis did show cross-reactive products, although in very small amounts.  相似文献   

9.
The parasporal body of Bacillus thuringiensis subsp. shandongiensis was characterized in terms of its structure, protein composition, and toxicological properties against several types of insects. The crystals of B. thuringiensis shandongiensis appear to consist of a major protein of 144 kDa present in an spherical inclusion, as determined by transmission electron microscopy, titration curve analysis, and SDS-PAGE of the solubilized crystals. A second protein of ca. 60 kDa is present in trace amounts and appears to be associated with a small bar-shaped inclusion. The 144-kDa protein has been characterized by isoelectric point determination, N-terminal amino acid sequence analysis, amino acid analysis, and immunological cross reactivity. Its N-terminal amino acid sequence differed from that of other B. thuringiensis crystal proteins. The 144-kDa protein was not immunologically related to the crystal proteins of two toxic serovars (B. thuringiensis israelensis and B. thuringiensis kurstaki HD-1) and one nontoxic serovar (B. thuringiensis indiana), as shown in immunoblots probed with antiserum raised against the 144-kDa B. thuringiensis shandongiensis protein, the B. thuringiensis israelensis crystal proteins, and the trypsin resistant fragment of B. thuringiensis kurstaki P1 proteins. In contrast to most B. thuringiensis serovars, B. thuringiensis shandongiensis crystals did not dissolve at pH 12. Solubilization was achieved in sodium bicarbonate at pH 8.3 and in the presence of 25 mM dithiothreitol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Bacillus thuringiensis subsp. israelensis is a bacterium producing crystals containing Cry and Cyt proteins, which are toxic for mosquito larvae. Nothing is known about the interaction between crystal toxins and decaying leaf litter, which is a major component of several mosquito breeding sites and represents an important food source. In the present work, we investigated the behavior of B. thuringiensis subsp. israelensis toxic crystals sprayed on leaf litter. In the presence of leaf litter, a 60% decrease in the amount of Cyt toxin detectable by immunology (enzyme-linked immunosorbent assays [ELISAs]) was observed, while the respective proportions of Cry toxins were not affected. The toxicity of Cry toxins toward Aedes aegypti larvae was not affected by leaf litter, while the synergistic effect of Cyt toxins on all B. thuringiensis subsp. israelensis Cry toxins was decreased by about 20% when mixed with leaf litter. The toxicity of two commercial B. thuringiensis subsp. israelensis strains (VectoBac WG and VectoBac 12AS) and a laboratory-produced B. thuringiensis subsp. israelensis strain decreased by about 70% when mixed with leaf litter. Taken together, these results suggest that Cyt toxins interact with leaf litter, resulting in a decreased toxicity of B. thuringiensis subsp. israelensis in litter-rich environments and thereby dramatically reducing the efficiency of mosquitocidal treatments.  相似文献   

12.
A 2.2-kb fragment containing a replicon from pBtoxis, the large plasmid that encodes the insecticidal endotoxins of Bacillus thuringiensis subsp. israelensis, was identified, cloned, and sequenced. This fragment contains cis elements, including iterons, found in replication origins of other large plasmids and suggests that pBtoxis replicates by a type A theta mechanism. Two genes, pBt156 and pBt157, encoding proteins of 54.4 kDa and 11.8 kDa, respectively, were present in an operon within this minireplicon, and each was shown by deletion analysis to be essential for replication. The deduced amino acid sequences of the 54.4-kDa and 11.8-kDa proteins showed no substantial homology with known replication (Rep) proteins. However, the 54.4-kDa protein contained a conserved FtsZ domain, and the 11.8 kDa protein contained a helix-turn-helix motif. As FtsZ proteins have known functions in bacterial cell division and the helix-turn-helix motif is present in Rep proteins, it is likely that these proteins function in plasmid replication and partitioning. The minireplicon had a copy number of two or three per chromosome equivalent in B. thuringiensis subsp. israelensis but did not replicate in B. cereus, B. megaterium, or B. subtilis. A plasmid constructed to synthesize large quantities of the Cry11A and Cyt1A endotoxins demonstrated that this minireplicon can be used to engineer vectors for cry and cyt gene expression.  相似文献   

13.
Abstract The mosquitocidal parasporal bodies of the PG-14 isolate of Bacillus thuringiensis ssp. morrisoni and B. thuringiensis ssp. israelensis were purified on sodium bromide gradients and compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) electron microscopy and bioassays against mosquito larvae. The parasporal bodies of both subspecies were spherical/ovoidal, approx. 0.7–1.2 μm in diameter, and contained major proteins of 28, 65, 126 and 135 kDa. In addition to these, the parasporal body of B. thuringiensis ssp. morrisoni contained at least one other major protein, of 144 kDa, which correlated with the presence of a quasi-bi-pyramidal inclusion not present in the B. thuringiensis ssp. israelensis parasporal body. The LC50 for parasporal bodies of each subspecies was in the range of 3 ng/ml for fourth-instars of Aedes aegypti . These results indicate that B. thuringiensis Serotype 8a:8b, which is generally considered to produce proteins toxic to lepidopterous insects, is capable of producing a protein toxin complement similar to B. thuringiensis Serotype 14.  相似文献   

14.
The parasporal inclusion proteins of the type strain of Bacillus thuringiensis serovar higo (H44), that have moderate mosquitocidal activity, were characterized. The purified parasporal inclusions, spherical in shape, were examined for activity against the two mosquito species, Culex pipiens molestus and Anopheles stephensi and the moth-fly, Telmatoscopus albipunctatus . The LC50 values of the inclusion for the two mosquitoes were 3·41 and 0·15 μg ml−1, respectively. No mortality was shown for T. albipunctatus larvae by the inclusions at concentrations up to 1 mg ml−1. Solubilized parasporal inclusions exhibited no haemolytic activity against sheep erythrocytes. Parasporal inclusions consisted of eight proteins with molecular masses of 98, 91, 71, 63, 59, 50, 44 and 27 kDa. Of these, the 50 and 44 kDa proteins were the major components. Analysis with immunoblotting revealed that, among several inclusion proteins of B. thuringiensis serovar israelensis, only two proteins of 130 kDa and 110 kDa reacted weakly with antibodies against higo proteins. N-terminal amino acid sequences of the 98, 91, and 71 kDa proteins showed 85–100% identity to those of the two established Cry protein classes, Cry4A and Cry10A.  相似文献   

15.
Argentinean isolates INTA Mo14–4 and INTA 33–5 of Bacillus thuringiensis were characterized. INTA 33–5 (serovar kenyae ) had an amorphous crystal containing proteins of 200 and 130 kDa. INTA Mo14–4 (serovar darmstadiensis ) had a bipyramidal crystal and a bar-shaped inclusion, containing proteins of 130, 60 and 40 kDa. Crystals of both strains showed no toxicity to lepidopteran, dipteran and coleopteran targets. Trypsin digestion of solubilized crystal proteins of INTA 33–5 produced four peptides (≈65 kDa). No putative δ–endotoxin was detected in Mo14–4. Both isolates showed unique plasmid patterns. Southern analyses showed no homology to four known cursive genes. These results indicate the uniqueness of two novel strains of B. thuringiensis which, in turn, confirm the great diversity of this species.  相似文献   

16.
Multiple myeloma is currently an incurable cancer of plasma B cells often characterized by overproduction of abnormally high quantities of a patient-specific, clonotypic immunoglobulin "M-protein." The M-protein is expressed on the cell membrane and secreted into the blood. We previously showed that ligand-toxin conjugates (LTC) incorporating the ribosome-inactivating Ricin-A toxin were very effective in specific cytolysis of the anti-ligand antibody-bearing target cells used as models for multiple myeloma. Here, we report on the incorporation of the membrane-disruptive Cyt1Aa toxin from Bacillus thuringiensis subsp. israelensis into LTCs targeted to murine myeloma cells. Proteolytically activated Cyt1Aa was conjugated chemically or genetically through either its amino or carboxyl termini to the major peptidic epitope VHFFKNIVTPRTP (p87-99) of the myelin basic protein. The recombinant fusion-encoding genes were cloned and expressed in acrystalliferous B. thuringiensis subsp. israelensis through the shuttle vector pHT315. Both chemically conjugated and genetically fused LTCs were toxic to anti-myelin basic protein-expressing murine hybridoma cells, but the recombinant conjugates were more active. LTCs comprising the Cyt1Aa toxin might be useful anticancer agents. As a membrane-acting toxin, Cyt1Aa is not likely to induce development of resistant cell lines.  相似文献   

17.
AIMS: To prove that Bacillus thuringiensis serovar shandongiensis strain 89-T-34-22 produces several novel cytotoxic proteins against human leukaemic T cells. METHODS AND RESULTS: Parasporal inclusion protein was solubilized and processed by proteinase K and was separated by anion-exchange chromatography. Cytopathic effects of each fraction against MOLT-4 and Jurkat cells were monitored. CONCLUSIONS: Existence of at least two novel cytotoxic proteins was suggested and N-terminal sequences of the newly identified proteins were determined to be QSTTDVIREY and X (Y or I) (P or I) NLANELA (X indicates uncertain amino acids). Molecular masses of the two proteins were approx. 27-28 kDa. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, we demonstrated that the strain 89-T-34-22 produces at least two novel cytotoxic proteins with similar molecular masses against human cancer cells. This is the first strain of B. thuringiensis which produces multiple cytotoxic proteins against human cancer cells.  相似文献   

18.
Most strains of the insecticidal bacterium Bacillus thuringiensis have a combination of different protoxins in their parasporal crystals. Some of the combinations clearly interact synergistically, like the toxins present in B. thuringiensis subsp. israelensis. In this paper we describe a novel joint activity of toxins from different strains of B. thuringiensis. In vitro bioassays in which we used pure, trypsin-activated Cry1Ac1 proteins from B. thuringiensis subsp. kurstaki, Cyt1A1 from B. thuringiensis subsp. israelensis, and Trichoplusia ni BTI-Tn5B1-4 cells revealed contrasting susceptibility characteristics. The 50% lethal concentrations (LC50s) were estimated to be 4,967 of Cry1Ac1 per ml of medium and 11.69 ng of Cyt1A1 per ml of medium. When mixtures of these toxins in different proportions were assayed, eight different LC50s were obtained. All of these LC50s were significantly higher than the expected LC50s of the mixtures. In addition, a series of bioassays were performed with late first-instar larvae of the cabbage looper and pure Cry1Ac1 and Cyt1A1 crystals, as well as two different combinations of the two toxins. The estimated mean LC50 of Cry1Ac1 was 2.46 ng/cm2 of diet, while Cyt1A1 crystals exhibited no toxicity, even at very high concentrations. The estimated mean LC50s of Cry1Ac1 crystals were 15.69 and 19.05 ng per cm2 of diet when these crystals were mixed with 100 and 1,000 ng of Cyt1A1 crystals per cm2 of diet, respectively. These results indicate that there is clear antagonism between the two toxins both in vitro and in vivo. Other joint-action analyses corroborated these results. Although this is the second report of antagonism between B. thuringiensis toxins, our evidence is the first evidence of antagonism between toxins from different subspecies of B. thuringiensis (B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. israelensis) detected both in vivo and in vitro. Some possible explanations for this relationship are discussed.  相似文献   

19.
A novel cytotoxic protein was isolated from the crystal produced by Bacillus thuringiensis subsp. coreanensis A1519 strain. Upon treatment of the crystal proteins by proteinase K, the significant cytotoxicity toward the leukemic T cell, MOLT-4, was exhibited. The microscopic observation indicated that the cell death was accompanied by no extensive rupture of the cell membrane. It was, therefore, suggested that the cell death of MOLT-4 was induced through a mechanism other than the colloid-osmotic swelling and cell lysis as caused by hitherto known B. thuringiensis crystal proteins. The 29-kDa polypeptide proved to be an active component of the proteinase K-digested A1519 crystal proteins. EC(50) of the purified 29-kDa polypeptide was 0.078 microg/ml. The N-terminal amino acid sequence of the 29-kDa polypeptide shared no significant homology with all the known proteins, suggesting that this polypeptide belong to a new family of B. thuringiensis crystal proteins. In the ligand blotting analysis, specific binding proteins for the 29-kDa polypeptide were detected from the cell membrane of MOLT-4.  相似文献   

20.
Insecticides based on Bacillus thuringiensis subsp. israelensis have been used for mosquito and blackfly control for more than 20 years, yet no resistance to this bacterium has been reported. Moreover, in contrast to B. thuringiensis subspecies toxic to coleopteran or lepidopteran larvae, only low levels of resistance to B. thuringiensis subsp. israelensis have been obtained in laboratory experiments where mosquito larvae were placed under heavy selection pressure for more than 30 generations. Selection of Culex quinquefasciatus with mutants of B. thuringiensis subsp. israelensis that contained different combinations of its Cry proteins and Cyt1Aa suggested that the latter protein delayed resistance. This hypothesis, however, has not been tested experimentally. Here we report experiments in which separate C. quinquefasciatus populations were selected for 20 generations to recombinant strains of B. thuringiensis that produced either Cyt1Aa, Cry11Aa, or a 1:3 mixture of these strains. At the end of selection, the resistance ratio was 1,237 in the Cry11Aa-selected population and 242 in the Cyt1Aa-selected population. The resistance ratio, however, was only 8 in the population selected with the 1:3 ratio of Cyt1Aa and Cry11Aa strains. When the resistant mosquito strain developed by selection to the Cyt1Aa-Cry11Aa combination was assayed against Cry11Aa after 48 generations, resistance to this protein was 9.3-fold. This indicates that in the presence of Cyt1Aa, resistance to Cry11Aa evolved, but at a much lower rate than when Cyt1Aa was absent. These results indicate that Cyt1Aa is the principal factor responsible for delaying the evolution and expression of resistance to mosquitocidal Cry proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号