首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gerhard Link 《Planta》1982,154(1):81-86
The steady-state levels of plastid RNA sequences in dark-grown and light-grown mustard (Sinapis alba L.) seedlings have been compared. Total cellular RNAs were labeled in vitro with 32P and hybridized to separated restriction fragments of plastid DNA. Cloned DNA fragments which encode the large subunit (LS) of ribulose-1,5-bisphosphate carboxylase [3-phospho-D-glycerate carboxylase (dimerizing), EC 4.1.1.39] and a 35,000 plastid polypeptide were used as probes to assess the levels of these two plastid mRNAs. The 1.22-kilobase-pair mRNA for the 35,000 polypeptide is almost undetectable in dark-grown seedlings, but is a major plastid mRNA in light-grown seedlings. The hybridization analysis of RNA from seedlings which were irradiated with red and far-red light indicates that the level of this mRNA, but not of LS mRNA, is controlled by phytochrome.Abbreviations LS large subunit - RuBP ribulose-1,5-bisphosphate - ptDNA plastid DNA  相似文献   

2.
The role of cytokinin in plastid biogenesis was investigated in etiolated rye leaves (Secale cereale L.) and compared with the effect of white light. Cytokinin deficiency of the leaves was induced by early excision of the seedling roots and reversed by the application of kinetin. The cytokinin supply had a much greater influence on plastid biogenesis than on leaf growth in general. The activities of several chloroplastic enzymes were increased 200%–400% after kinetin treatment of cytokinin-depleted leaves. The activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and the amount of fraction-I protein even showed a sevenfold increase. In cytokinin-depleted leaves the development of ribulose-1,5-bisphosphate carboxylase and NADP-glyceraldehydephosphate dehydrogenase was specifically, and markedly inhibited by actinomycin D. The inhibition was partially or even completely overcome after treatment with kinetin. However, under all conditions, RNA synthesis of the leaves, was only partially inhibited by actinomycin D. According to immunologic studies, all dark-grown leaves, in addition to the complete enzyme, contained an excess of free small subunit of ribulose-1,5-bisphosphate carboxylase that was absent in mature light-grown leaves. The most striking accumulation of free small subunit, protein occurred in cytokinin-depleted dark-grown leaves, indicating a deficiency of the plastidic synthesis of the large subunit. The capacity as well as the activity of plastidic protein synthesis was preferentially increased by cytokinin and light. Cytokinin increased, the amount of plastidic ribosomes per leaf and relative to the amount of cytoplasmic ribosomes. While the percentage of cytoplasmic ribosomes bound as polyribosomes was little affected by the cytokinin supply, the proportion of plastidic polyribosomes was increased from 11% to 18% after kinetin treatment of cytokinin-depleted leaves. In the light, the proportion of plastidic polyribosomes reached 39% of the total plastidic ribosomes.Abbreviations RuBP carboxylase ribulose-1,5-bisphosphate carboxylase - NADP-GAP dehydrogenase NADP-dependent glyceraldehyde-3-phosphate dehydrogenase  相似文献   

3.
In spite of only slightly subnormal pigment contents, two plastome mutants of Oenothera (Valpha, Isigma) were practically incapable of photosynthetic CO2 fixation and another one exhibited considerably reduced photosynthesis (IVbeta). While other photosynthetic enzymes were present as far as investigated, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) activity was very low or missing altogether. As shown by gel electrophoresis, mutant IVbeta contained some, though little, fraction I protein. In the other two mutants fraction I protein could not be detected. Also, neither the small nor the large subunit of ribulose-1,5-biphosphate carboxylase could be found in these mutants. In immunodiffusion experiments with a monospecific antiserum against rye ribulose-1,5-bisphosphate carboxylase, only extracts from wild-type Oenothera produced visible precipitation lines. Still, the presence of very low levels of immunochemically reactive antigen was indicated for all three mutants. The highest level was observed in mutant IVbeta. The behaviour of the mutant extracts suggested that the antigens of mutant and wild type leaves reacting with the antiserum were not identical. All mutants appeared to have a coupled electron transport system as shown by ATP measurements, light scattering and 515 nm absorption changes. Linear electron transport was possible in the mutants. Still, the photoresponse of cytochrome f and fluorescence measurements suggested altered electron transport properties in the mutants. These are interpreted to be secondary lesions of the photosynthetic apparatus caused by primary deficiency in ribulose-1,5-bisphosphate carboxylase activity. From the absence in two mutants (Valpha, Isigna) of the small subunit of ribulose-1,5-bisphosphate carboxylase, which is known to be coded for by nuclear DNA and to be synthesized on cytoplasmic ribosomes, it appears that the genetic system of the plastids is capable of interfering with the genome-controlled synthesis of plastid components.  相似文献   

4.
In spite of only slightly subnormal pigment contents, two plastome mutants of Oenothera (Vα, Iσ) were practically incapable of photosynthetic CO2 fixation and another one exhibited considerably reduced photosynthesis (IVβ). While other photosynthetic enzymes were present as far as investigated, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) activity was very low or missing altogether. As shown by gel electrophoresis, mutant IVβ contained some, though little, fraction I protein. In the other two mutants fraction I protein could not be detected. Also, neither the small nor the large subunit of ribulose-1,5-bisphosphate carboxylase could be found in these mutants. In immunodiffusion experiments with a monospecific antiserum against rye ribulose-1,5-bisphosphate carboxylase, only extracts from wild-type Oenothera produced visible precipitation lines. Still, the presence of very low levels of immunochemically reactive antigen was indicated for all three mutants. The highest level was observed in mutant IVβ. The behaviour of the mutant extracts suggested that the antigens of mutant and wild type leaves reacting with the antiserum were not identical. All mutants appeared to have a coupled electron transport system as shown by ATP measurements, light scattering and 515 nm absorption changes. Linear electron transport was possible in the mutants. Still, the photoresponse of cytochrome f and fluorescence measurements suggested altered electron transport properties in the mutants. These are interpreted to be secondary lesions of the photosynthetic apparatus caused by primary deficiency in ribulose-1,5-bisphosphate carboxylase activity. From the absence in two mutants (Vα, Iσ) of the small subunit of ribulose-1,5-bisphosphate carboxylase, which is known to be coded for by nuclear DNA and to be synthesized on cytoplasmic ribosomes, it appears that the genetic system of the plastids is capable of interfering with the genome-controlled synthesis of plastid components.  相似文献   

5.
R. Oelmüller  H. Mohr 《Planta》1986,167(1):106-113
Expression of nuclear genes involved in plastidogenesis is known to be controlled by light via phytochrome. Examples are the small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase and the light harvesting chlorophyll a/b binding protein of photosystem II (LHCP). In the present study we show that, beside phytochrome, the integrity of the plastid is essential for the expression of the pertinent nuclear genes as measured at the level of translatable mRNA. When the plastids are severely damaged by photooxidation in virtually carotenoid-free mustard (Sinapis alba L.) seedling cotyledons (made carotenoid-free by the application of Norflurazon, NF), almost no SSU, no SSU precursor, LHCP and LHCP precursor can be detected by immunological assays, and almost no translatable mRNA of SSU and LHCP can be found, although the levels and rates of phytochrome-mediated syntheses of representative cytoplasmic, mitochondrial and glyoxisomal enzymes are not adversely affected and morphogenesis of the mustard seedling proceeds normally (Reiß et al. 1983; Planta 159, 518–528). Norflurazon per se has no effect on the amount of translatable mRNA of SSU and LHCP as shown by irradiation of NF-treated seedlings with far-red light (FR) which strongly activates phytochrome but does not cause photooxidation in the plastids. It is concluded that a signal from the plastid is required to allow the phytochrome-mediated appearance of translatable mRNA for SSU and LHCP. Seedlings not treated with NF show a higher level of translatable mRNALHCP in red light (RL) compared to FR, whereas the mRNASSU levels are the same in RL and FR. These facts indicate that the level of translatable mRNALHCP is adversely affected if the apoprotein is not incorporated into the thylakoid membrane.Abbreviations FR far-red light (3.5 W m-2) - LHCP light harvesting chlorophyll a/b binding protein of photosystem II - LSU large subunit of RuBPCase - NF Norflurazon - RL red light (6.8 W m-2) - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - SSU small subunit of RuBPCase - WL white light (28 W m-2)  相似文献   

6.
7.
8.
9.
T R Conley  M C Shih 《Plant physiology》1995,108(3):1013-1022
In a previous study of Arabidopsis thaliana (J. Dewdney, T.R. Conley, M.-C. Shih, H.M. Goodman [1993] Plant Physiol 103: 1115-1121), it was postulated that both blue light receptor- and phytochrome-mediated pathways contribute to regulation of the nuclear genes encoding A and B subunits of glyceraldehyde-3-phosphate dehydrogenase (GAPA and GAPB). Here were report on the involvement of a nuclear gene encoding a putative blue-light receptor (HY4) and of a nuclear gene encoding phytochrome A apoprotein (PHYA) in regulation of the GAPA and GAPB genes in response to blue and far-red light. Continuous light irradiation experiments with the hy4 mutant demonstrate that the HY4 gene product is required for full expression of GAPA, GAPB, and one or more of the nuclear genes encoding small subunits of of ribulose-1,5-bisphosphate carboxylase/oxygenase. Continuous light irradiation and fluence-response studies with the phyA-101 mutant show that phytochrome A functions in far-red light regulation of GAPA, GAPB, nuclear genes encoding small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase, and CAB genes. Phytochromes A and B alone either do not participate in red light-mediated gene regulation or have redundant functions, as shown by analysis of phyA-101 and phyB-1 single mutants. In addition, the hypothesis that chloroplast-nucleus interactions affect GAPA and GAPB gene regulation was tested. Herbicide-mediated photooxidative damage to chloroplasts in A thaliana seedlings strongly decreased the maximum amount of GAPA and GAPB steady-state mRNA detected in continuous-light irradiation experiments. Full expression of the GAPB genes is dependent on the presence of functional chloroplasts.  相似文献   

10.
《BBA》1987,894(2):165-173
The capacity of ribulose-1,5-bisphosphate carboxylase to bind reversibly chloroplast metabolites which are the substrates for both thylakoid and stromal enzymes was assessed using spinach chloroplasts and chloroplast extracts and with pure wheat ribulose-1,5-bisphosphate carboxylase. Measurements of the rate of coupled electron flow to methyl viologen in ‘leaky’ chloroplasts (which retained the chloroplast envelope and stromal enzymes but which were permeable to metabolites) and also with broken chloroplasts and washed thylakoids were used to study the effects of binding ADP and inorganic phopshate to ribulose-1,5-bisphosphate carboxylase. The presence of ribulose-1,5-bisphosphate carboxylase significantly altered the values obtained for apparent Km for inorganic phosphate and ADP of coupled electron transport. The Km (Pi) in washed thylakoids was 60–80 μM, in ‘leaky’ chloroplasts it was increased to 180–200 μM, while in ‘leaky’ chloroplasts preincubated with KCN and ribulose 1,5-bisphosphate the value was decreased to 40–50 μM. Similarly, the Km (ADP) of coupled electron transport in washed thylakoids was 60–70 μM, in ‘leaky’ chloroplasts it was 130–150 μM and with ‘leaky’ chloroplasts incubated in the presence of KCN and ribulose 1,5-bisphosphate a value of 45–50 μM was obtained. The ability of ribulose 1,5-bisphosphate carboxylase to reduce the levels of free glycerate 3-phosphate in the absence of ribulose 1,5-bisphosphate was examined using a chloroplast extract system by varying the concentrations of stromal protein or purified ribulose 1,5-bisphosphate carboxylase. The effect of binding glycerate 3-phosphate to ribulose-1,5-bisphosphate carboxylase on glycerate 3-phosphate reduction was to reduce both the rate an the amount of NADPH oxidation for a given amount of glycerate 3-phosphate added. The addition of ribulose 1,5-bisphosphate reinitiated NADPH oxidation but ATP or NADPH did not. Incubation of purified ribulose-1,5-bisphosphate carboxylase with carboxyarabinitolbisphosphate completely inhibited the catalytic activity of the enzyme and decreased inhibition of glycerate-3-phosphate reduction. Two binding sites with different affinities for glycerate 3-phosphate were observed with pure ribulose-1,5-bisphosphate carboxylase.  相似文献   

11.
The aim was to determine whether a reduced carboxylation efficiency in needles of damaged spruce trees (Picea abies), is derived from a direct impairment of the ribulose-1,5-bisphosphate carboxylase (RuBP carboxylase) or there is an indirect inhibition of the RuBP carboxylase. In 1985, 1986 and 1987 measurements of RuBP carboxylase activity were carried out at three locations. Trees of different ages and degrees of damage were examined. RuBP carboxylase was assayed using both a rapid extraction method to determine the initial activity and an in vitro test after total activation to determine the total activity. The activation state was calculated as the ratio of initial activity to total activity.Within three vegetation periods the total activity in needles of damaged and apparently healthy or slightly damaged spruce trees indicated no definite difference in the annual average. On the other hand, in damaged needles a continued decline of the actual activation of RuBP carboxylase was established. The observation of continued depression of the activation state of the enzyme in needles of damaged spruce trees can possibly be due to a reduced photosynthetic electron transport rate.The measurements of the soluble protein content indicate a tendency to increased amounts in the needles of damaged trees. In accordance, a considerable increase of the activity of some enzymes like glutamine synthethase, phosphoenol-pyruvate carboxylase, and catalase could be noticed. However, there is no clear connection between the RuBP carboxylase and the content of soluble proteins.Abbreviations chl chlorophyll a+b, dw-dry weight, i.a-initial activity - P-700 reaction center of photosystem I - PVP polyvinylpyrrolidone 25 - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - t.a. total activity  相似文献   

12.
When Ribulose- 1,5-bisphosphate carboxylase/oxygenase was purified from spinach leaves (Spinacia oleracea) using precipitation with polyethylene glycol and MgCl2 followed by DEAE cellulose chromatography, 75% of phosphoribulokinase and 7% of phosphoriboisomerase activities copurified with ribulose- 1,5-bisphosphate carboxylase/oxygenase. This enzyme preparation showed ribose-5-phosphate and ribulose-5-phosphate dependent carboxylase and oxygenase activities which were nearly equivalent to its corresponding ribulose- 1,5-bisphosphate dependent activity. The ribose-5-phosphate and ribulose-5-phosphate dependent reaction rates were stable and linear for much longer time periods than the ribulose- 1,5-bisphosphate dependent rates. When sucrose gradients were used to purify ribulose- 1,5-bisphosphate carboxylase/oxygenase from crude stromal extracts, phosphoribulokinase was found to cosediment with ribulose- 1,5-bisphosphate carboxylase. Under these conditions most of the phosphoriboisomerase activity remained with the slower sedimenting proteins. Ammonium sulfate precipitation resulted in separation of the ribulose- 1,5-bisphosphate carboxylase peak from phosphoribulokinase peak. Crude extracts of peas Pisum sativum and spinach contained 0.725 to 0.730 milligram of phosphoribulokinase per milligram of chlorophyll, respectively, based on an enzyme-linked immunosorbent assay.  相似文献   

13.
Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and ribulose-1,5-bisphospate (RuBP) carboxylase (EC 4.1.1.39) activities in leaves of different maize hybrids grown under field conditions (high light intensity) and in a growth chamber (low light intensity) were determined. Light intensity and leaf age affected PEP carboxylase activity, whereas RuBP carboxylase was affected by leaf age only at low light intensity. PEP carboxylase/RuBP carboxylase activity ratio decreased according to light intensity and leaf age. Results demonstrate that Zea mays grown under field conditions is a typical C4 species in all leaves independently from their position on the stem, whereas it may be a C3 plant when it is grown in a growth chamber at low light intensityAbbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

14.
The transient changes in absorption of visible light upon addition of ribulose 1,5-bisphosphate to Co2(+)-activated ribulose-1,5-bisphosphate carboxylase/oxygenase were used to show altered catalytic properties of a mutant form of the enzyme from Anacystis nidulans. The mutant form of the enzyme had a modified N-terminus and a 10-fold greater Km for ribulose 1,5-bisphosphate than the natural cyanobacterial enzyme.  相似文献   

15.
香蕉rbcS基因启动子的克隆及序列分析   总被引:1,自引:0,他引:1  
以巴西香蕉为材料,根据已经获得的香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的全长cDNA序列设计1对专一引物,通过PCR扩增得到了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基的基因组全长,序列长811 bp,含有2个内含子。根据其基因组序列设计引物,采用SEFA-PCR方法,以总DNA为模板克隆了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的启动子序列,长1 681 bp。用PLACE软件分析发现该序列具有启动子的基本元件TATA-box、CAAT-box,包含多个胁迫诱导元件,如光诱导元件、赤霉素、低温诱导元件、昼夜节律调控元件等。该序列的克隆与分析为进一步研究香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的表达调控奠定了基础。  相似文献   

16.
A protein kinase activity responsible for the in vitro phosphorylation of at least six endogenous polypeptides including the large subunit of the ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) is present in the stroma (3000 X g supernatant, S30) of spinach chloroplasts. The phosphorylation of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit is strongly enhanced when sodium fluorure is used as a protein phosphatase inhibitor. Phosphorylation occurs on threonine and serine residues. The protein kinase involved is not Ca2+-dependent. There is also evidence for a protein phosphatase activity which suggests a coupled regulation by a phosphorylation-dephosphorylation process. The phosphorylating activity is drastically reduced when S30 is prepared from leaves harvested after a dark period. Phosphorylation of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit is not related to its own synthesis. The in vitro phosphorylation of the glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) is also demonstrated.  相似文献   

17.
In contrast to other plants the plastid genome of Acetabularia is larger in size and shows a high degree of variability. This study on the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase demonstrates that strongly conserved areas also exist in the plastid genome of the Dasycladaceae. Searching for differences in the amino acid sequence of the large subunit from Acetabularia mediterranea and Acicularia schenckii, proteolytic peptides which differ in their elution behaviour in reverse-phase high-performance liquid chromatography were sequenced. Only six amino acids were found to be exchanged in the large subunit from these two species. Since these two species diverged approx. 150 million years ago, these results imply that 0.84 amino-acid exchanges per 100 amino acids have occurred in 108 years, underlining the strong conservatism of the large subunit.Abbreviations A Acetabularia mediterranea - Ac. Acicularia schenckii - HPLC high-performance liquid chromatography - LSU large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase - PAGE polyacrylamide gel electrophoresis - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate  相似文献   

18.
Purification of ribulose-1,5-bisphosphate carboxylase from primary leaves of Phaseolus vulgaris var. Red Kidney with ammonium sulfate precipitation, ion exchange chromatography, and gel filtration resulted in the complete loss of detectable oxygenase activity and the retention of a low velocity and a high K(m) form of both the carboxylase and oxygenase. The polyethylene glycol-6000-purified ribulose-1, 5-bisphosphate oxygenase displayed a broad pH optimum (7.9-9.4) and a high K(m) for O(2) and ribulose 1,5-bisphosphate (0.90 mm and 0.25 mm, respectively). Initiation of the oxygenase reaction with protein rather than ribulose 1,5-bisphosphate resulted in reduced activity. The enzymes prepared by the two purification procedures were electrophoretically different.Etiolated primary leaf tissue exhibited low rates of both carboxylase and oxygenase. Similar developmental kinetic activity was observed for both reactions during greening. Photosynthetic (14)CO(2) fixation was inhibited 95% by 100% N(2) gas during the first 24 hours of greening, but the inhibition was rapidly overcome by 48 to 72 hours of light exposure.  相似文献   

19.
Dujardyn M  Foyer CH 《Plant physiology》1989,91(4):1562-1568
The response of the Benson-Calvin cycle to changes in irradiance and photoinhibition was measured in low-light grown barley (Hordeum vulgare) leaves. Upon the transition from the growth irradiance (280 micromoles per square meter per second) to a high photoinhibitory irradiance (1400 micromoles per square meter per second), the CO2 assimilation rate of the leaves doubled within minutes but high irradiance rapidly caused a reduction in quantum efficiency. Following exposure to high light the activities of NADP-malate dehydrogenase and fructose-1,6-bisphosphatase obtained near maximum values and the activation state of ribulose-1,5-bisphosphate carboxylase increased. The activity of the latter remained constant throughout the period of photoinhibitory irradiance, but the increase in the activities of fructose-1,6-bisphosphatase and NADP-malate dehydrogenase was transient decreasing once more to much lower values. This suggests that immediately following the transition to high light reduction and activation of redox-modulated enzymes occurred, but then the stroma became relatively oxidized as a result of photoinhibition. The leaf contents of glucose 6-phosphate and fructose 6-phosphate increased following exposure to high light but subsequently decreased, suggesting that following photoinhibition sucrose synthesis exceeded the rate of carbon assimilation. The ATP content attained a constant value much higher than that in low light. During photoinhibition the glycerate 3-phosphate content greatly increased while ribulose-1,5-bisphosphate decreased. The fructose-1,6-bisphosphate and triose phosphate contents increased initially and then remained constant. During photoinhibition CO2 assimilation was not limited by ribulose-1,5-bisphosphate carboxylase activity but rather by the regeneration of the substrate, ribulose-1,5-bisphosphate, related to a restriction on the supply of reducing equivalents.  相似文献   

20.
Mutagenesis in vitro of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) from Anacystis nidulans was used to generate novel enzymes. Two conserved residues, threonine 4 and lysine 11 in the N-terminus were changed. The substitution of threonine 4 with serine or valine had little effect on the kinetic parameters. The substitution of lysine 11 with leucine, which is non-polar, increased the K m for ribulose-1,5-bisphosphate from 82 to 190 M but its replacement with glutamine, which has polar properties, had no appreciable effect.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - LSU large sub-unit of Rubisco - SSU small subunit of Rubisco We thank Dr. S. Gutteridge (DuPont, Wilmington, USA) for structural information and for his comments on the results described. The technical assistance of Mr. A. Cowland and Mr. I. Major was invaluable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号