首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In contrast to most aminoacyl-tRNA synthetases which are monomers or oligomers of a single polypeptide, Escherichia coli glycyl-tRNA synthetase has an alpha-2, beta-2 structure. The enzyme requires both subunits for catalysis of either adenylate or aminoacyl-tRNA synthesis. The head-to-tail arrangement of the alpha- and beta-chain coding regions in the genome suggests that the two-subunit protein may be tantamount to a single chain. We fused the carboxyl terminus of the alpha-chain to the amino terminus of the beta-chain, through a short peptide linker. Five different amino acid substitutions were placed in the linker. In all instances, the fusion polypeptide is stable in maxicell extracts. In a glyS null strain, a gene encoding any of the fusion proteins substitutes for the wild-type gene. Assays confirm that, in vitro, the engineered polypeptide fusion is active to within 2- to 3-fold of the wild-type, unfused chains. Oligomers of the fusion protein are observed and may be required for activity. Because the creation and limited manipulation of the artificial peptide linker region does not destroy the activity, we also conclude that the C-terminal part of the alpha-chain and the amino-terminal part of the beta-chain are not important for activity.  相似文献   

2.
The Escherichia coli dnaX gene encodes both the tau and gamma subunits of DNA polymerase III holoenzyme in one reading frame. The 71.1 kDa tau and the shorter gamma share N-terminal sequences. Mutagenesis of a potential ribosomal frameshift signal located at codons 428-430 without changing the amino acid sequence of the tau product, eliminated detectable synthesis of the gamma subunit, suggesting that the reading frame is shifted at that sequence and gamma is terminated by a nonsense codon located in the -1 frame 3 nucleotides downstream of the signal. This seems to be the first known case of a frameshift which is used, along with the termination codon in the -1 frame, to terminate a peptide within a reading frame. [Mutagenesis of a dibasic peptide (lys-lys) at codons 498-499, the site at which a tau'-'LacZ fusion protein was cleaved in vitro (1) had no effect on gamma formation in vivo, suggesting that cleavage observed in vitro is not the mechanism of gamma formation in vivo.  相似文献   

3.
4.
The contributions made by the alpha and beta subunits of E. coli glycyl-tRNA synthetase to the recognition of tRNA have been investigated via binding and immunological methods. Using the nitrocellulose filter assay, we have shown that isolated beta subunit, but not the alpha subunit, binds [14C]glycyl-tRNA with an affinity comparable to that of the native enzyme. Further, the data indicate that the beta subunit possesses one binding site for glycyl-tRNA while the native or reconstituted enzyme (alpha 2 beta 2) has two sites. Rabbit antibodies directed at the beta subunit or the holoenzyme inhibit efficiently the ability of the enzyme to aminoacylate tRNA while alpha-subunit antibodies have a smaller effect. Since none of the antisera have an appreciable effect on the ATP-PPi exchange activity of the enzyme under these conditions, the beta-subunit (and holoenzyme) antisera evidently interfere with productive tRNA binding. Taken together, the data indicate that the larger, beta subunit of glycyl-tRNA synthetase plays a major role in tRNA recognition.  相似文献   

5.
The subunit structure of methionyl-tRNA synthetase from Escherichia coli   总被引:7,自引:0,他引:7  
G L Koch  C J Bruton 《FEBS letters》1974,40(1):180-182
  相似文献   

6.
7.
J Anselme  M H?rtlein 《Gene》1989,84(2):481-485
The Escherichia coli asnS gene codes for asparaginyl-tRNA synthetase (NRSEC). We have sequenced the asnS region, including 382 bp of the 5'-untranslated region, 1398 bp of the coding region and 280 bp of the 3'-untranslated region. The DNA-derived NRSEC amino acid (aa) sequence was confirmed by direct aa sequencing of the N-terminal parts of the native protein and of a 28-kDa internal fragment generated by trypsin digestion. The asnS gene product has been purified to homogeneity using three chromatographic steps. Sequence comparison of the deduced NRSEC sequence with all aminoacyl-tRNA synthetase sequences showed significant homologies with the yeast aspartyl-tRNA synthetase and weaker relationships with other aminoacyl-tRNA synthetases for aa with an XAX codon.  相似文献   

8.
The selenophosphate synthetases from several organisms contain a selenocysteine residue in their active site where the Escherichia coli enzyme contains a cysteine. The synthesis of these enzymes, therefore, depends on their own reaction product. To analyse how this self-dependence is correlated with the selenium status, e.g. after recovery from severe selenium starvation, we expressed the gene for the selenocysteine-containing selenophosphate synthetase from Haemophilus influenzae (selD HI) in an E. coliΔselD strain. Gene selD HI gave rise to a selenium-containing gene product and also supported – via its activity – the formation of E. coli selenoproteins. The results provide evidence either for the suppression of the UGASec codon with the insertion of an amino acid allowing the formation of a functional product or for a bypass of the selenophosphate requirement. We also show that the selenocysteine synthesis and the insertion systems of the two organisms are fully compatible despite conspicuous differences in the mRNA recognition motif. Received: 8 July 1997 / Accepted: 3 September 1997  相似文献   

9.
The Neurospora crassa arg-2 and the Saccharomyces cerevisiae ortholog CPA1 encode the arginine-specific carbamoyl-phosphate synthetase (CPS-A) small subunit. Arginine decreases synthesis of this subunit through the action of a 5' upstream open reading frame in the mRNA that encodes a cis-regulatory element, the arginine attenuator peptide (AAP), which stalls ribosomes in response to arginine. We performed a comparative analysis of the genomic structure and predicted peptide sequence of the AAP and CPS-A small subunit across many fungi. Differences at the genomic level included variation in intron number and position within the AAP and CPS-A coding regions and differences in known regulatory motifs. Although differences exist in AAP sequence, there were three absolutely conserved amino acid residues in the predicted peptide, including an aspartic acid crucial for arginine-dependent regulation of arg-2 and CPA1. A diverged Basidiomycete AAP was shown to retain function as an Arg-specific negative regulator of translation.  相似文献   

10.
11.
12.
Phenylalanyl-tRNA synthetase (EC 6.1.1.20) has been purified to homogeneity from a 100-fold overproducing Escherichia coli strain carrying a hybrid pBR322 plasmid containing the pheS-pheT locus. The purified enzyme is identical to the phenylalanyl-tRNA synthetase isolated form an haploid strain. The enzyme was found to dissociate in the presence of 0.5 M NaSCN and the alpha- and beta-subunits composing the native alpha 2 beta 2 enzyme were separated by gel filtration. Neither isolated subunit showed significant catalytic activity. A complex indistinguishable from the native enzyme with full catalytic activity is recovered upon mixing the subunits. The N- and C-terminal sequences and the amino acid composition of each subunit were determined. They are compared to the available data concerning the primary structure of the subunits, as deduced from nucleotide sequencing of the pheS-pheT operon.  相似文献   

13.
14.
The sfaA gene of the uropathogenic Escherichia coli O6 strain 536, which is responsible for the determination of the S fimbrial protein subunit, was sequenced. The structural gene codes for a polypeptide of 180 amino acids including a 24-residue N-terminal signal sequence. A size of 15.95 kDa was calculated for the processed SfaA protein. The nucleotide and deduced amino acid sequences show significant homology to those of the F1C fimbria and, to a lesser extent, of the mannose-sensitive hemagglutinating fimbria (FimA, PilA). Only week homology to P fimbriae subunits (F72, Pap) was found.  相似文献   

15.
The pheST operon codes for the two subunits of phenylalanyl-tRNA synthetase and it expression is controlled by attenuation in a way similar to many amino acid biosynthetic operons. The nucleotide sequence of the control regions of the operon indicates the presence of several open reading frames besides that of the leader peptide. One of these open reading frames, called the alternative leader peptide, starts at about the same place as the leader peptide and ends after the terminator of the attenuator. Another open reading frame, called the terminator peptide, starts after the terminator and covers about half the distance to pheS, the first structural gene of the operon. The present report shows that, in fact, the only open reading frame to be translated efficiently is the leader peptide itself. The alternative leader peptide and the terminator peptide are both translated at a negligible rate.  相似文献   

16.
We report the DNA sequence of the valS gene from Bacillus stearothermophilus and the predicted amino acid sequence of the valyl-tRNA synthetase encoded by the gene. The predicted primary structure is for a protein of 880 amino acids with a molecular mass of 102,036. The molecular mass and amino acid composition of the expressed enzyme are in close agreement with those values deduced from the DNA sequence. Comparison of the predicted protein sequence with known protein sequences revealed a considerable homology with the isoleucyl-tRNA synthetase of Escherichia coli. The two enzymes are identical in some 20-25% of their amino acid residues, and the homology is distributed approximately evenly from N-terminus to C-terminus. There are several regions which are highly conservative between the valyl- and isoleucyl-tRNA synthetases. In one of these regions, 15 of 20 amino acids are identical, and in another, 10 of 14 are identical. The valyl-tRNA synthetase also contains a region HLGH (His-Leu-Gly-His) near its N-terminus equivalent to the consensus HIGH (His-Ile-Gly-His) sequence known to participate in the binding of ATP in the tyrosyl-tRNA synthetase. This is the first example of extensive homology found between two different aminoacyl-tRNA synthetases.  相似文献   

17.
A strategy was designed to isolate mutants of glycyl-tRNA synthetase that are altered at the amino acid binding site, including a class with altered amino acid specificity. For this purpose, the plasmid pBR322 was mutated so that the codon (AGC) of the active site Ser-68 in the beta-lactamase gene was changed to the glycine codon GGC to inactivate the encoded enzyme. Suppressors that increase the amount of beta-lactamase activity of the Gly-68 allele of beta-lactamase were isolated and some mapped to the gene encoding glycyl-tRNA synthetase (glyS). While in vitro misaminoacylation of tRNA(Gly) with serine was not detected for any of the mutants, glycyl-tRNA synthetase activity was altered. One severely affected glyS mutant (N302) was studied in more detail. For this mutant, a single Pro-61----Leu substitution in the alpha chain confers an elevation of the Km values for glycine (25-fold) and for ATP (45-fold) in the aminoacylation reaction, but only a minor perturbation of the Km for tRNA. There also was a severely reduced adenylate synthesis activity (greater than 100-fold). In addition, a nonlinear dependence between aminoacylation activity and enzyme concentration was observed which implies that the alpha chain Pro-61----Leu mutation has disrupted the functionally essential subunit interactions of the holoenzyme. The results of the preceding paper have shown that the alpha chain and parts of the beta chain are required for aminoacylation and adenylate synthesis activity. The results of this study suggest that the alpha chain specifically contributes to amino acid and to ATP binding in a way that is affected by proper subunit interactions.  相似文献   

18.
The organization of seven genes located at about 38 min on the genetic map of Escherichia coli was examined; these genes included pheS and pheT, which code for the alpha and beta subunits of phenylalanyl-transfer ribonucleic acid synthetase, and thrS, the structural gene for threonyl-transfer ribonucleic acid synthetase. Deletion mutants were isolated from an F-prime-containing merodiploid strain and were characterized genetically. Seventeen different kinds of deletions extending into pheS of pheT were identified. These deletions unambiguously defined the gene order as aroD pps himA pheT pheS thrS pfkB. Mutants with deletions covering either pheS or pheT, but not both, were analyzed further by assay of phenylalanyl-transfer ribonucleic acid synthetase. The phenotype of the mutants with a deletion from pfkB through pheS was anomalous; although the pheT gene was apparently still present, its product, the beta subunit, was much reduced in activity.  相似文献   

19.
Six recombinants were constructed which expressed portions of the bovine papillomavirus E1 open reading frame as OmpF/E1/beta-galactosidase tribrid fusion proteins in Escherichia coli. Rabbit sera containing E1-specific antibodies were generated against five of these six fusion proteins (which together constitute 74% of the full-length E1 open reading frame). The individual fusion proteins and their cognate antisera will be useful reagents for defining the structure and function of the BPV E1 protein(s).  相似文献   

20.
The twin-arginine translocase (Tat) system is used by many bacteria to translocate folded proteins across the cytoplasmic membrane. The TatA subunit is the predicted pore-forming subunit and has been shown to form a homo-oligomeric complex. Through accessibility experiments using the thiol-reactive reagents 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid and Nalpha-(3-maleimidylproprionyl)biocytin toward site-specific cysteine mutants in TatA, we show that the N-terminus of TatA is located in the cytoplasm rather than the previously assumed periplasm. We also confirm previous observations that the C-terminus has a dual topology. By treatment with the membrane uncoupler carbonyl cyanide-m-chlorophenyl hydrazone, we show that the topological state of the C-terminus is dependent on the membrane potential. These results suggest two architectures of TatA in the membrane: one with a single transmembrane helix and the other with two transmembrane helices. Molecular models of both topologies were used to develop and cartoon a homo-oligomeric complex as a channel with a diameter of approximately 50 A and suggest that the double transmembrane helix topology might be the building block for the translocation channel. Additionally, in vivo cross-linking experiments of Gly2Cys and Thr22Cys mutants showed that Gly2, at the beginning of transmembrane helix-1, is in close proximity with Gly2 of a neighboring TatA, as Cys2 cross-linked immediately upon the addition of copper phenanthroline. On the other hand, Cys22, at the other end of the transmembrane helix, took at least 10 min to cross-link, suggesting that a possible movement or reorientation is required to bring this residue into proximity with a neighboring TatA subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号