首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Why and how organisms differ in life‐history strategies across their range is a long‐standing topic of interest to evolutionary ecologists. Although many studies have addressed this issue for several life‐history traits, such as body size and clutch size, very few have been made for some others traits, including longevity. In the present study, we performed a comparative study aiming to develop general patterns of geographical variation in longevity of urodele and anuran amphibians using published information on demographic age derived from skeletochronology. We conducted within‐species meta‐analyses using datasets of two (ten urodele and 12 anuran species) and multiple (two urodele and nine anuran species) spatially‐separated populations and found that maturation, mean, and maximum age all increased with altitude but not with latitude in each sex of both amphibian groups. This geographical pattern held true across 33 urodele and 86 anuran species at common body sizes, independent of phylogeny. It is likely that metabolic rate, reproductive investment, and mortality risk, which are the key factors that affect longevity as suggested by ageing theory, vary systemically along altitudinal gradients but not along latitudinal gradients. The evolutionary causes behind these puzzling patterns deserve further investigation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 623–632.  相似文献   

2.
The biochemical properties and regulation of several plant CAX (CAtion eXchanger)-type vacuolar Ca2+/H+ exchangers have been extensively analysed in yeast expression assays. In the present study, we compare and contrast the phenotypes of yeast cells expressing the CAX1 cDNA and open reading frame (ORF). We report that the CAX1 ORF, but not the cDNA containing the 3′-untranslated region (UTR), was able to confer Ca2+ tolerance when expressed in a Ca2+-sensitive yeast mutant. Additionally, only yeasts expressing the N-terminal truncated CAX1 ORF were able to grow on high Mn2+ media, suggesting that removal of the 3′-UTR altered activity. However, removal of the 3′-UTR from another CAX did not alter the yeast phenotypes. Expression studies demonstrated that expressing the CAX1 ORF in yeast elevates CAX1 RNA and protein levels. Our results suggest that the 3′-UTR modulates expression of CAX1 in yeast.  相似文献   

3.
Mx+ mice are much more resistant to influenza virus than Mx- strains. The resistance is mediated by interferon (IFN) alpha/beta. After IFN treatment, Mx+ but not Mx- cells accumulate Mx protein and become specifically resistant to orthomyxoviruses. cDNA encoding Mx protein was cloned and sequenced. Southern analyses indicate that Mx- alleles derive from their Mx+ counterpart by deletions. IFN-treated Mx+ cells contained a 3.5 kb Mx mRNA, while Mx- cells showed only traces of shorter Mx RNA. Mx- cells transformed with Mx cDNA expressed Mx protein constitutively to varying extents; resistance of individual cells to influenza virus correlated with Mx protein expression. Thus, specific resistance to influenza virus in vivo may be attributed to Mx protein expression and is independent of other IFN-mediated effects.  相似文献   

4.
RNA has long been an enticing therapeutic target, but is now garnering increased attention, largely driven by clinical successes of RNA interference–based drugs. While gene knockdown by well-established RNA interference– and other oligonucleotide-based strategies continues to advance in the clinic, the repertoire of targetable effectors capable of altering gene expression at the RNA level is also rapidly expanding. In this review, we focus on several recently developed bifunctional molecular technologies that both interact with and act upon a target RNA. These new approaches for programmable RNA knockdown, editing, splicing, translation, and chemical modifications stand to provide impactful new modalities for therapeutic development in the coming decades.  相似文献   

5.
Thrombopoietin(TPO)isahematopoieticcytokineclonedinrecentyears[1—3].Itsfunctionistoregulatetheformationofplatelet,whichplaysanimportantroleinbloodclotting,bystimulatingthestemcellstodifferentiateanddevelopintomaturemegakaryocytes.Theresultsofanimalexperim…  相似文献   

6.
7.
H Yanagi  I Ogawa  M Okamoto  T Yoshima  T Hozumi 《Gene》1989,76(1):19-26
Recombinant plasmids for the expression of human erythropoietin (EPO) cDNA in Namalwa cells were constructed. From the results of the EPO expression efficiency in transiently transfected cells, it was found that the simian virus 40 (SV40) early promoter directs EPO synthesis more efficiently in Namalwa cells than does the long terminal repeat promoter of Rous sarcoma virus and that the 3'-noncoding sequence including splice junction and polyadenylation site derived from the rabbit beta-globin gene are more effective than those of the SV40 early gene. However, in stable transformants, no simple relationship was found between the expression level of EPO cDNA and the structure of the introduced expression vectors.  相似文献   

8.
A tobacco calmodulin-related protein, rgs-CaM, interacts with viral suppressors of RNA silencing and modulates host RNA silencing. Plants overexpressing the rgs-CaM gene were crossed with plants exhibiting sense transgene-induced RNA silencing (S-PTGS) or inverted repeat-induced RNA silencing (IR-PTGS). S44 plants harboring a sense transgene encoding a tobacco microsomal ω-3 fatty acide desaturase (NtFAD3) exhibited the S-PTGS phenotype. The frequency of the S-PTGS phenotype incidence was nearly 100 % in the hemizygous S44 plants, but was reduced to 30 % in crossbred plants with an rgs-CaM-overexpressing transgenic line. The remaining 70 % of crossbred plants successfully overexpressed the NtFAD3 transgene, and the amount of NtFAD3 small interfering RNAs (siRNAs) was largely decreased. In contrast, overexpression of rgs-CaM did not suppress siRNA production in the IR-PTGS that targeted the NtFAD3 gene. These results indicated that rgs-CaM suppresses RNA silencing at a step upstream of siRNA production and does not interfere with the later steps of RNA silencing, including siRNA-mediated RNA degradation.  相似文献   

9.
The Mi-1.2 gene in tomato (Solanum lycopersicum) is a member of the nucleotide-binding leucine-rich repeat (NBLRR) class of plant resistance genes, and confers resistance against root-knot nematodes (Meloidogyne spp.), the potato aphid (Macrosiphum euphorbiae), and the sweet potato whitefly (Bemisia tabaci). Mi-1.2 mediates a rapid local defensive response at the site of infection, although the signaling and defensive pathways required for resistance are largely unknown. In this study, eggplant (S. melongena) was transformed with Mi-1.2 to determine whether this gene can function in a genetic background other than tomato. Eggplants that carried Mi-1.2 displayed resistance to the root-knot nematode Meloidogyne javanica but were fully susceptible to the potato aphid, whereas a susceptible tomato line transformed with the same transgene was resistant to nematodes and aphids. This study shows that Mi-1.2 can confer nematode resistance in another Solanaceous species. It also indicates that the requirements for Mi-mediated aphid and nematode resistance differ. Potentially, aphid resistance requires additional genes that are not conserved between tomato and eggplant.  相似文献   

10.
11.
Tissue microarrays maximize returns in cellular pathology whilst minimizing the use of cells and tissues. They are made by arraying cores of tissue taken from multiple donor blocks into a single recipient block. Accordingly, the histology and pathology of several hundred tissues can be represented in one tissue microarray that, when stained by immunohistochemistry, provides comprehensive topographic information on protein expression. Used with complimentary techniques, such as complementary DNA microarray analysis, tissue microarrays are providing valuable data for the identification of new markers of disease and assisting in the discovery of therapeutic targets. They are also leading a revolution in cellular pathology as high-throughput technology is introduced to maximize the information provided.  相似文献   

12.
Tissue microarrays maximize returns in cellular pathology whilst minimizing the use of cells and tissues. They are made by arraying cores of tissue taken from multiple donor blocks into a single recipient block. Accordingly, the histology and pathology of several hundred tissues can be represented in one tissue microarray that, when stained by immunohistochemistry, provides comprehensive topographic information on protein expression. Used with complimentary techniques, such as complementary DNA microarray analysis, tissue microarrays are providing valuable data for the identification of new markers of disease and assisting in the discovery of therapeutic targets. They are also leading a revolution in cellular pathology as high-throughput technology is introduced to maximize the information provided.  相似文献   

13.
S Lolle  N Skipper  H Bussey    D Y Thomas 《The EMBO journal》1984,3(6):1383-1387
Two cDNA clones of the segment of Saccharomyces cerevisiae M1 double-stranded RNA, which codes for the yeast killer toxin, have been expressed in yeast using the expression vector pYT760. Toxin expression and secretion depended upon the presence of a yeast promoter. Transformants not only contain an authentic preprotoxin precursor, as determined by precipitation of intracellular proteins with antitoxin antisera, but also display an immunity phenotype. The evidence is that the immunity protein is part of the preprotoxin and may act by masking toxin binding sites. Neither cDNA clone had a complete 5' terminus and the preprotoxin translational start was missing. The promoter and the initiator ATG were supplied by the expression vector. One clone with a full-length preprotoxin but altered N-terminal amino acids gave a normal glycosylated intracellular precursor. A clone with an N-terminal nine amino acid deletion gave a precursor which was not glycosylated but toxin was still secreted.  相似文献   

14.
BACKGROUND: Immunofluorescence cytometry of antigen and DNA content provides relative measurements of the cell cycle phase distribution of a specific epitope. Measurement of correlated expression of epitopes on signaling and regulatory proteins will be useful in the study of the complex pathways involved in cell cycle regulation and carcinogenesis. However, to formulate regulatory pathway models, measurements of molecules per cell would be more useful than relative measurements of intensity. Here, we report on a system in which the relationship between molecules and fluorescence is determined for a reference set of cell lines that are then used to directly calculate the number of molecules for unknowns. To demonstrate the process, we calculated the cell cycle phase distribution of SV40 large T antigen (Tag) in the reference cells. METHODS: A set of cell line clones expressing different levels of Tag were isolated. Quantitative Western blots of these cells and purified, recombinant Tag were performed. Cells from the same sample were stained and analyzed by flow cytometry for Tag and DNA. The relationship between molecules and fluorescence was established and calculations were performed for the phase distributions of Tag. RESULTS: The five cell lines had 0.11, 0.27, 1.06, 2.44, and 2.63 x 10(6) molecules of Tag per cell, determined by Western blot. The average coefficient of variation was 10.6%. The relationship of molecules to fluorescence fit a linear equation (r(2) = 0.96) over the range, 0.11 - 2.63 x 10(6) molecules, however, the same equation did not fit the relationship between 0 molecules, defined by isotype staining controls, and the lowest expressing cell line. To calculate the phase distributions of molecules in the lowest cell line, a second linear equation from 0 to 110,000 molecules was used. CONCLUSIONS: This work describes a system where fixed cells expressing various levels of a target antigen quantified by Western blots can be used to standardize flow cytometric measurements of gene expression in absolute terms.  相似文献   

15.
Protein P0 interacts with proteins P1alpha, P1beta, P2alpha, and P2beta, and forms the Saccharomyces cerevisiae ribosomal stalk. The capacity of RPP0 genes from Aspergillus fumigatus, Dictyostelium discoideum, Rattus norvegicus, Homo sapiens, and Leishmania infantum to complement the absence of the homologous gene has been tested. In S. cerevisiae W303dGP0, a strain containing standard amounts of the four P1/P2 protein types, all heterologous genes were functional except the one from L. infantum, some of them inducing an osmosensitive phenotype at 37 degrees C. The polymerizing activity and the elongation factor-dependent functions but not the peptide bond formation capacity is affected in the heterologous P0 containing ribosomes. The heterologous P0 proteins bind to the yeast ribosomes but the composition of the ribosomal stalk is altered. Only proteins P1alpha and P2beta are found in ribosomes carrying the A. fumigatus, R. norvegicus, and H. sapiens proteins. When the heterologous genes are expressed in a conditional null-P0 mutant whose ribosomes are totally deprived of P1/P2 proteins, none of the heterologous P0 proteins complemented the conditional phenotype. In contrast, chimeric P0 proteins made of different amino-terminal fragments from mammalian origin and the complementary carboxyl-terminal fragments from yeast allow W303dGP0 and D67dGP0 growth at restrictive conditions. These results indicate that while the P0 protein RNA-binding domain is functionally conserved in eukaryotes, the regions involved in protein-protein interactions with either the other stalk proteins or the elongation factors have notably evolved.  相似文献   

16.
A rat brain cDNA encoding for a novel protein with agmatinase activity was cloned and functionally expressed. The protein was expressed as a histidine-tagged fusion product with a molecular weight of about 63 kDa. Agmatine hydrolysis was strictly dependent on Mn(2+); K(m) and k(cat) values were 2.5+/-0.2 mM and 0.8+/-0.2 s(-1), respectively. The product putrescine was a linear competitive inhibitor (K(i)=5+/-0.5 mM). The substrate specificity, metal ion requirement and pH optimum (9.5) coincide with those reported for Escherichia coli agmatinase, the best characterized of the agmatinases. However, as indicated by the k(cat)/K(m) (320 M(-1)s(-1)), the recombinant protein was about 290-fold less efficient than the bacterial enzyme. The deduced amino sequence revealed great differences with all known agmatinases, thus excluding the protein from the arginase family. It was, however, highly identical (>85%) to the predicted sequences for fragments of hypothetical or unnamed LIM domain-containing proteins. As a suggestion, the agmatinase activity is adscribed to a protein with an active site that promiscuously catalyze a reaction other than the one it evolved to catalyze.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号