首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of spectrometers that allow simultaneous measurements of the spectra of pulsed X-ray and electron emission from a micropinch discharge in a wide energy range (1.5?C500 keV) is described. The experimental results of the study of electron and X-ray spectra of micropinch discharge plasma are discussed. The mechanism for the formation of hard X-rays is caused by acceleration processes in micropinch discharge plasma.  相似文献   

2.
The effect of admixtures and excitation conditions on the population distribution of the vibrational levels of krypton excimer states is investigated. The emission spectra of a krypton discharge plasma in a supersonic jet, an extended capillary discharge, and a barrier discharge are considered. It is found that the population distribution in a barrier discharge best fits the equilibrium conditions.  相似文献   

3.
Results are presented from measurements of the parameters of high-temperature plasma in the Z-pinch neck formed when a current of up to 3.5 MA flows through a low-density polymer load. To enhance the effect of energy concentration, a deuterated microporous polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1–1.3 mm was placed in the central part of the load. During the discharge current pulse, short-lived local hot plasma spots with typical dimensions of about 200–300 μm formed in the neck region. Their formation was accompanied by the generation of soft X-ray pulses with photon energies of E > 0.8 keV and durations of 3–4 ns. The plasma electron temperature in the vicinity of the hot spot was measured from the vacuum UV emission spectra of the iron diagnostic admixture and was found to be about 200–400 eV. The appearance of hot plasma spots was also accompanied by neutron emission with the maximum yield of 3 × 1010 neutrons/shot. The neutron energy spectra were studied by means of the time-of-flight method and were found to be anisotropic with respect to the direction of the discharge current.  相似文献   

4.
Results are presented from experimental studies of the emission spectra of microplasma discharges excited on a titanium surface by a pulsed plasma flow. The excited discharges are maintained by current pulses with an amplitude of 200 A and a duration of 20 ms. Analysis of more than 100 spectral lines of titanium atoms and ions in the wavelength range of 350–800 nm shows that the electron temperature of a microplasma discharge is in the range of 0.2–1.3 eV.  相似文献   

5.
The expansion of the cathode spot and the generation of shock waves during the formation and development of a pulsed volume discharge in atmospheric-pressure helium were studied by analyzing the emission spectra of the cathode plasma and the spatiotemporal behavior of the plasma glow. The transition of a diffuse volume discharge in a centimeter-long gap into a high-current diffuse mode when the gas pressure increased from 1 to 5 atm and the applied voltage rose from the statistical breakdown voltage to a 100% overvoltage was investigated. Analytical expressions for the radius of the cathode spot and its expansion velocity obtained in the framework of a spherically symmetric model agree satisfactorily with the experimental data.  相似文献   

6.
Some results from studies of microwave discharges in heavy hydrocarbons are presented. Microwave energy was introduced into liquid hydrocarbon via a coaxial line. The pressure above the liquid surface was equal to the atmospheric pressure. The discharge was ignited in a mixture of argon and hydrocarbon vapor. Argon was supplied through a channel in the central conductor of the coaxial line. The emission spectra of discharges in different liquid hydrocarbons were studied. It is shown that the emission spectra mainly consist of sequences of Swan bands, while radiation of other plasma components is on the noise level. Spectra of plasma emission are presented for discharges in liquid n-heptane, nefras, and C-9 oil used to produce chemical fibers. The rotational (gas) and vibrational temperatures are determined by processing the observed spectra.  相似文献   

7.
Optical emission spectra from the microwave discharge plasma that is used to activate gas-phase deposition of carbon films are systematically investigated under various deposition conditions. The line emission intensities from CH and C2 radicals, which are responsible for the growth of the diamond and graphite phases, respectively, are studied as functions of the main macroparameters of the process. To find the relation between the features of the emission spectra and the composition of the films obtained, the films were examined using Raman spectroscopy and electron microscopy. It is shown that monitoring the relative intensities of the spectral lines can be used to obtain the desired type of film, in which case the state of the substrate surface and the presence of a catalyst on it also play an important role. Experiments on the deposition of carbon films in the pulsed regime of plasma excitation show the possibility of changing the phase composition of the film by varying both the pulse repetition rate and the off-duty factor. At the same average microwave power, the rate of film deposition in the pulsed regime of plasma excitation is lower than that in a continuous discharge; however, the growth rate of the graphite phase decreases insignificantly.  相似文献   

8.
The parameters of a repetitive volume discharge in CF2Cl2 (CFC-12) and its mixtures with argon at pressures of P(CF2Cl2)≤0.4 kPa and P(Ar)≤1.2 kPa are studied. The discharge was ignited in an electrode system consisting of a spherical anode and a plane cathode by applying a dc voltage Uch≤1 kV to the anode. The electrical and optical characteristics of a volume discharge (such as the current-voltage characteristics; the plasma emission spectra; and the waveforms of the discharge voltage, the discharge current, and the total intensity of plasma emission) are investigated. It is found that, by shunting the discharge gap with a pulsed capacitor with a capacitance of C0≤3.5 nF, it is possible to control the amplitude and duration of the discharge current pulses, as well as the characteristics of the pulsed plasma emission. The increase in the capacitance C0 from 20 to 3500 pF leads to a significant increase in the amplitude and duration of the discharge current pulses, whereas the pulse repetition rate decreases from 70 to 3 kHz. The glow discharge exists in the form of a domain with a height of up to 3 cm and diameter of 0.5–3.0 cm. The results obtained can be used to design an untriggered repetitive germicidal lamp emitting in the Cl2(257/200 nm) and ArCl (175 nm) molecular bands and to develop plasmachemical methods for depositing amorphous fluorocarbon and chlorocarbon films.  相似文献   

9.
Results of two-dimensional hydrodynamic simulations of a surface glow discharge operating at pressures of 0.2–0.5 Torr in a nitrogen flow propagating with a velocity of 1000 m/s in the presence of external ionization are presented. The effect of the external ionization rate on discharge operation is analyzed. The current-voltage characteristics of the discharge are calculated for different intensities of external ionization in both the presence and absence of secondary electron emission from the cathode. The discharge structure and plasma parameters in the vicinity of the loaded electrode are considered. It is shown that, when the discharge operates at the expense of secondary emission from the cathode, the discharge current and cathode sheath configuration are insensitive to external ionization. It is also demonstrated that, even at a high rate of external ionization, the discharge operates due to secondary emission from the cathode.  相似文献   

10.
Ion emission from the plasma of a micropinch discharge is studied by analyzing the plasma flow from the discharge region with the help of time-of-flight technique and probe diagnostics. Concurrently, soft Xray emission from the micropinch is recorded. The experimental data are interpreted using the radiative contraction model.  相似文献   

11.
Electrode microwave discharges in nitrogen at pressures of 1–16 Torr and input microwave powers of 30–180 W have been studied by space-resolved emission spectroscopy. It is shown that the discharge is highly nonuniform. The relative intensities of the first and second positive nitrogen bands, as well as of the first negative band of nitrogen ions, are found to vary significantly throughout a discharge because, in different discharge regions, emitting particles are excited by different mechanisms. The gas temperature was determined by the method of the unresolved rotational structure of different sequences of the emission spectra of the second positive system of nitrogen.  相似文献   

12.
Results are presented from experimental investigations of the dynamics of optical emission from a nanosecond diffuse discharge in a rod-plane electrode system. A study was made of discharges in a 10-cm-long interelectrode gap in atmospheric-pressure air (the cathode being a 1-cm-diameter rod with a bullet-shaped end). The voltage across the discharge gap was 220 kV and the voltage pulse duration was 180 ns, the voltage rise time being 10 ns. In experiments, the discharges were observed to evolve through two stages: the bridging stage and the conduction stage. The bridging stage begins with intense optical emission from the cathode region, the onset of the emission being delayed with respect to the beginning of the voltage pulse. Simultaneously with the onset of optical emission, a displacement current corresponding to the motion of charged particles begins to be generated in the cathode region. The duration of this current corresponds to the time the emission front takes to bridge the gap. As the emission front reaches the anode region, the current increases abruptly, indicating the beginning of the conduction stage. It was found that the time delay of optical emission relative to the beginning of the voltage pulse largely governs the discharge parameters: as the time delay becomes longer, the emission front velocity in the bridging stage increases from 0.6 to 1.5 cm/ns, the probability of realizing a multichannel structure of the discharge becomes higher, and the discharge current and the intensity of X-ray emission from the discharge grow.  相似文献   

13.
Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode discharge is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current?voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.  相似文献   

14.
Results are presented from experimental studies of the structure of an ac surface discharge excited by a metal needle over a plane dielectric surface. A barrier corona discharge was ignited in atmospheric-pressure argon at frequencies of the applied sinusoidal voltage from 50 Hz to 30 kHz. In experiments, the area of a dielectric covered with the discharge plasma increased with applied voltage. The discharge structure in diffuse and streamer modes was recorded using a digital camera and a high-speed image tube operating in a frame mode. It is found that, in the positive and negative half-periods of the applied voltage, the structure of the surface discharge is substantially different. The statistical characteristics of the branching surface streamers in the positive and negative half-periods are determined as functions of the voltage frequency. The most intense lines in the emission spectrum of the barrier corona are determined for both half-periods. The correlation between the dynamics of the emission intensity and the dynamics of the discharge current and voltage is investigated.  相似文献   

15.
The production of excited xenon iodides and iodine dimers in the plasma of a longitudinal dc glow discharge is investigated. The discharge was ignited in iodine vapor and Xe/I2 mixtures at xenon pressures of P(Xe)=0.1–1.5 kPa and deposited powers of 10–100 W. The current-voltage characteristics of a glow discharge, the plasma emission spectra in the spectral range of 200–650 nm, and the intensities of spectral lines and molecular bands are studied as functions of the deposited power and the xenon partial pressure in a Xe/I2 mixture. It is found that the discharge plasma emits within the spectral range of 206–343 nm, which includes the 206-nm resonant line of atomic iodine and the XeI(B-X) 253-nm and I2(B-X) 343-nm molecular bands. The power deposited in the plasma and the xenon pressure P(Xe) are optimized to achieve the maximum UV emission intensity. The 7-W total UV power emitted from the entire surface of the cylindrical discharge tube is achieved with an efficiency of ≤5%.  相似文献   

16.
Results of theoretical and experimental studies of the optical spectrum of a pulse-periodic high-pressure cesium discharge are presented. The results of calculations are in good agreement with experimental data. The possibility of creating an efficient light source based on recombination emission from the discharge plasma is demonstrated. The formation mechanisms of the continuous spectrum of discharge radiation are considered.  相似文献   

17.
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy.  相似文献   

18.
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy.  相似文献   

19.
V.A. Sineshchekov  F.F. Litvin 《BBA》1977,462(2):450-466
Red luminescence of purple membranes from Halobacterium halobium cells in suspension, dry film or freeze-dried preparations was studied and its emission, excitation and polarization spectra are reported. The emission spectra have three bands at 665–670, 720–730 and at 780–790 nm. The position (maximum at 580 nm) and shape of the excitation spectra are close to those of the absorption spectra. The spectra depend on experimental conditions, in particular on pH of the medium. Acidification increases the long wavelength part of the emission spectra and shifts the main excitation maximum 50–60 nm to the longer wavelength side. Low-temperature light-induced changes of the absorption, emission and excitation spectra are presented. Several absorbing and emitting species of bacteriorhodopsin are responsible for the observed spectral changes. The bacteriorhodopsin photoconversion rate constant was estimated to be about 1 · 1011 s?1 at ? 196°C from the quantum yields of the luminescence (1 · 10?3) and photoreaction (1 · 10?1). The temperature dependence of the luminescence quantum yield points to the existence of two or three quenching processes with different activation energies. High degree of luminescence polarization (about 45–47%) throughout the absorption and fluorescence spectra and its temperature independence show that there is no energy transfer between bacteriorhodopsin molecules and no chromophore rotation during the excitation lifetime. In carotenoid-containing membranes, energy migration from the bulk of carotenoids to bacteriorhodopsin was not found either. Bacteriorhodopsin phosphorescence was not observed in the 500–1100 nm region and the emission is believed to be fluorescence by nature.  相似文献   

20.
Time-resolved emission spectra of hemoglobin on the picosecond time scale   总被引:2,自引:0,他引:2  
We used front-face illumination to examine the steady-state and time-resolved emission from the intrinsic tryptophan emission of human hemoglobin (Hb). Experimental conditions were identified which eliminated all contributions of scattered light. The sensitivity obtained using front-face optics was adequate to allow measurement of the wavelength-dependent frequency response of the emission to 2 GHz. The intensity decays displayed pico- and nanosecond components in the emission at all wavelengths from 315 to 380 nm. The contribution of the picosecond component decreased from 72 to 37% over this range of wavelengths. Frequency-domain measurements were used to calculate the time-resolved emission spectra and decay-associated emission spectra. These spectra indicate that the picosecond components of the emission display maxima near 320 nm, whereas the nanosecond components are centered at longer wavelengths near 335 nm. The nanosecond components appear to be due to residual impurities which remain even in highly purified samples of Hb. However, we cannot eliminate the possibility that some of these components are due to Hb itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号