首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to generate C40 octaprenyl pyrophosphate (OPP), which constitutes the side chain of bacterial ubiquinone or menaquinone. In this study, the first structure of long chain C40-OPPs from Thermotoga maritima has been determined to 2.28-A resolution. OPPs is composed entirely of alpha-helices joined by connecting loops and is arranged with nine core helices around a large central cavity. An elongated hydrophobic tunnel between D and F alpha-helices contains two DDXXD motifs on the top for substrate binding and is occupied at the bottom with two large residues Phe-52 and Phe-132. The products of the mutant F132A OPPs are predominantly C50, longer than the C40 synthesized by the wild-type and F52A mutant OPPs, suggesting that Phe-132 is the key residue for determining the product chain length. Ala-76 and Ser-77 located close to the FPP binding site and Val-73 positioned further down the tunnel were individually mutated to larger amino acids. A76Y and S77F mainly produce C20 indicating that the mutated large residues in the vicinity of the FPP site limit the substrate chain elongation. Ala-76 is the fifth amino acid upstream from the first DDXXD motif on helix D of OPPs, and its corresponding amino acid in FPPs is Tyr. In contrast, V73Y mutation led to additional accumulation of C30 intermediate. The new structure of the trans-type OPPs, together with the recently determined cis-type UPPs, significantly extends our understanding on the biosynthesis of long chain polyprenyl molecules.  相似文献   

2.
Octaprenyl pyrophosphate synthase (OPPs), an enzyme belonging to the trans-prenyltransferases family, is involved in the synthesis of C40 octaprenyl pyrophosphate (OPP) by reacting farnesyl pyrophosphate (FPP) with five isopentenyl pyrophosphates (IPP). It has been reported that OPPs is essential for bacteria's normal growth and is a potential target for novel antibacterial drug design. Here we report the crystal structure of OPPs from Helicobacter pylori, determined by MAD method at 2.8 Å resolution and refined to 2.0 Å resolution. The substrate IPP was docked into HpOPPs structure and residues involved in IPP recognition were identified. The other substrate FPP, the intermediate GGPP and a nitrogen-containing bisphosphonate drug were also modeled into the structure. The resulting model shed some lights on the enzymatic mechanism, including (1) residues Arg87, Lys36 and Arg39 are essential for IPP binding; (2) residues Lys162, Lys224 and Gln197 are involved in FPP binding; (3) the second DDXXD motif may involve in FPP binding by Mg2+ mediated interactions; (4) Leu127 is probably involved in product chain length determination in HpOPPs and (5) the intermediate products such as GGPP need a rearrange to occupy the binding site of FPP and then IPP is reloaded. Our results also indicate that the nitrogen-containing bisphosphonate drugs are potential inhibitors of FPPs and other trans-prenyltransferases aiming at blocking the binding of FPP.  相似文献   

3.
Octaprenyl pyrophosphate synthase (OPPs) catalyzes the chain elongation of farnesyl pyrophosphate (FPP) via consecutive condensation reactions with five molecules of isopentenyl pyrophosphate (IPP) to generate all-trans C40-octaprenyl pyrophosphate. The polymer forms the side chain of ubiquinone that is involved in electron transport system to produce ATP. Our previous study has demonstrated that Escherichia coli OPPs catalyzes IPP condensation with a rate of 2 s(-1) but product release limits the steady-state rate at 0.02 s(-1) [Biochim. Biophys. Acta 1594 (2002) 64]. In the present studies, a putative gene encoding for OPPs from Thermotoga maritima, an anaerobic and thermophilic bacterium, was expressed, purified, and its kinetic pathway was determined. The enzyme activity at 25 degrees C was 0.005 s(-1) under steady-state condition and was exponentially increased with elevated temperature. In contrast to E. coli OPPs, IPP condensation rather than product release was rate limiting in enzyme reaction. The product of chain elongation catalyzed by T. maritima OPPs was C40 and the rate of its conversion to C45 was negligible. Under single-turnover condition with 10 microM OPPs-FPP complex and 1 microM IPP, only the C20 was formed rather than C20-C40 observed for E. coli enzyme. Together, our data suggest that the thermophilic OPPs from T. maritima has lower enzyme activity at 25 degrees C, higher product specificity, higher thermal stability and lower structural flexibility than its mesophilic counterpart from E. coli.  相似文献   

4.
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of one allylic substrate farnesyl pyrophosphate (FPP) and five homoallylic substrate isopentenyl pyrophosphate (IPP) molecules to form a C40 long‐chain product OPP, which serves as a side chain of ubiquinone and menaquinone. OPPs belongs to the trans‐prenyltransferase class of proteins. The structures of OPPs from Escherichia coli were solved in the apo‐form as well as in complexes with IPP and a FPP thio‐analog, FsPP, at resolutions of 2.2–2.6 Å, and revealed the detailed interactions between the ligands and enzyme. At the bottom of the active‐site tunnel, M123 and M135 act in concert to form a wall which determines the final chain length. These results represent the first ligand‐bound crystal structures of a long‐chain trans‐prenyltransferase and provide new information on the mechanisms of catalysis and product chain elongation. Proteins 2015; 83:37–45. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation reactions of eight isopentenyl pyrophosphate (IPP) with farnesyl pyrophosphate (FPP) to generate C(55) undecaprenyl pyrophosphate (UPP). In the present study, site-directed mutagenesis, fluorescence quenching, and stopped-flow methods were utilized to examine the substrate binding and the protein conformational change. (S)-Farnesyl thiopyrophosphate (FsPP), a FPP analogue, was synthesized to probe the enzyme inhibition and events associated with the protein fluorescence change. This compound with a much less labile thiopyrophosphate shows K(i) value of 0.2 microm in the inhibition of Escherichia coli UPPS and serves as a poor substrate, with the k(cat) value (3.1 x 10(-7) s(-1)) 10(7) times smaller than using FPP as the substrate. Reduction of protein intrinsic fluorescence was observed upon addition of FPP (or FsPP) to the UPPS solution. Moreover, fluorescence studies carried out using W91F and other mutant UPPS with Trp replaced by Phe indicate that FPP binding mainly quenches the fluorescence of Trp-91, a residue in the alpha3 helix that moves toward the active site during substrate binding. Using stopped-flow apparatus, a three-phase protein fluorescence change with time was observed by mixing the E.FPP complex with IPP in the presence of Mg(2+). However, during the binding of E.FsPP with IPP, only the fastest phase was observed. These results suggest that the first phase is due to the IPP binding to E.FPP complex, and the other two slow phases are originated from the protein conformational change. The two slow phases coincide with the time course of FPP chain elongation from C(15) to C(55) and product release.  相似文献   

6.
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes the consecutive condensation reactions of a farnesyl pyrophosphate (FPP) with eight isopentenyl pyrophosphates (IPP), in which new cis-double bonds are formed, to generate undecaprenyl pyrophosphate that serves as a lipid carrier for peptidoglycan synthesis of bacterial cell wall. The structures of Escherichia coli UPPs were determined previously in an orthorhombic crystal form as an apoenzyme, in complex with Mg(2+)/sulfate/Triton, and with bound FPP. In a further search of its catalytic mechanism, the wild-type UPPs and the D26A mutant are crystallized in a new trigonal unit cell with Mg(2+)/IPP/farnesyl thiopyrophosphate (an FPP analogue) bound to the active site. In the wild-type enzyme, Mg(2+) is coordinated by the pyrophosphate of farnesyl thiopyrophosphate, the carboxylate of Asp(26), and three water molecules. In the mutant enzyme, it is bound to the pyrophosphate of IPP. The [Mg(2+)] dependence of the catalytic rate by UPPs shows that the activity is maximal at [Mg(2+)] = 1 mm but drops significantly when Mg(2+) ions are in excess (50 mm). Without Mg(2+), IPP binds to UPPs only at high concentration. Mutation of Asp(26) to other charged amino acids results in significant decrease of the UPPs activity. The role of Asp(26) is probably to assist the migration of Mg(2+) from IPP to FPP and thus initiate the condensation reaction by ionization of the pyrophosphate group from FPP. Other conserved residues, including His(43), Ser(71), Asn(74), and Arg(77), may serve as general acid/base and pyrophosphate carrier. Our results here improve the understanding of the UPPs enzyme reaction significantly.  相似文献   

7.
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes chain elongation of farnesyl pyrophosphate (FPP) to undecaprenyl pyrophosphate (UPP) via condensation with eight isopentenyl pyrophosphates (IPP). UPPs from Escherichia coli is a dimer, and each subunit consists of 253 amino acid residues. The chain length of the product is modulated by a hydrophobic active site tunnel. In this paper, the crystal structure of E. coli UPPs was refined to 1.73 A resolution, which showed bound sulfate and magnesium ions as well as Triton X-100 molecules. The amino acid residues 72-82, which encompass an essential catalytic loop not seen in the previous apoenzyme structure (Ko, T.-P., Chen, Y. K., Robinson, H., Tsai, P. C., Gao, Y.-G., Chen, A. P.-C., Wang, A. H.-J., and Liang, P.-H. (2001) J. Biol. Chem. 276, 47474-47482), also became visible in one subunit. The sulfate ions suggest locations of the pyrophosphate groups of FPP and IPP in the active site. The Mg2+ is chelated by His-199 and Glu-213 from different subunits and possibly plays a structural rather than catalytic role. However, the metal ion is near the IPP-binding site, and double mutation of His-199 and Glu-213 to alanines showed a remarkable increase of Km value for IPP. Inside the tunnel, one Triton surrounds the top portion of the tunnel, and the other occupies the bottom part. These two Triton molecules may mimic the hydrocarbon moiety of the UPP product in the active site. Kinetic analysis indicated that a high concentration (>1%) of Triton inhibits the enzyme activity.  相似文献   

8.
Chang SY  Chen YK  Wang AH  Liang PH 《Biochemistry》2003,42(49):14452-14459
Increasing evidence has shown that intrinsic disorder of proteins plays a key role in their biological functions. In the case of undecaprenyl pyrophosphate synthase (UPPs), which catalyzes the chain elongation of farnesyl pyrophosphate (FPP) to undecaprenyl pyrophosphate via eight consecutive condensation reactions with isopentenyl pyrophosphate, a highly flexible loop 72-83 was previously linked to protein conformational change required for catalysis [Chen, Y. H., Chen, A. P.-C., Chen, C. T., Wang, A. H.-J., and Liang, P. H., (2002) J. Biol. Chem. 277, 7369-7376]. The crystal structure and fluorescence studies suggested that the alpha3 helix connected to the loop moves toward the active site when the substrate is bound. To identify the active conformation and study the role of the loop for conformational change, the UPPs mutants with amino acids inserted into or deleted from the loop were examined. The inserted mutant with extra Ala residues fails to display the intrinsic fluorescence quenching upon FPP binding, and its crystal structure reveals only the open form. These phenomena appear to be different from the wild-type enzyme in which open and closed conformers were observed and suggest that the extended loop fails to pull the alpha3 helix and/or the extra amino acids in the loop cause steric hindrance on the alpha3 helix movement. The loop-shortening mutants with deletion of V82 and S83 or S72 also adopt an open conformation with the loop stretched, although they show decreased intrinsic fluorescence with FPP bound, similar to that seen in the wild-type enzyme. We conclude that the closed conformation is apparently the active conformation. Change of the length of the loop 72-83 impairs the ability of conformational change and causes remarkably lower activity of UPPs.  相似文献   

9.
Zhang YW  Li XY  Koyama T 《Biochemistry》2000,39(41):12717-12722
Among prenyltransferases, medium-chain (E)-prenyl diphosphate synthases are unusual because of their heterodimeric structures. The larger subunit has highly conserved regions typical of (E)-prenyltransferases. The smaller one has recently been shown to be involved in the binding of allylic substrate as well as determining the chain length of the reaction product [Zhang, Y.-W., et al. (1999) Biochemistry 38, 14638-14643]. To better understand the product chain length determination mechanism of these enzymes, several amino acid residues in the larger subunits of Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase and Bacillus subtilis heptaprenyl diphosphate synthase were selected for substitutions by site-directed mutagenesis and examined by combination with the corresponding wild-type or mutated smaller subunits. Replacement of the Ala at the fifth position upstream to the first Asp-rich motif with bulky amino acids in both larger subunits resulted in shortening the chain lengths of the major products, and a double combination of mutant subunits of the heptaprenyl diphosphate synthase, I-D97A/II-A79F, yielded exclusively geranylgeranyl diphosphate. However, the combination of a mutant subunit and the wild-type, I-Y103S/II-WT or I-WT/II-I76G, produced a C(40) prenyl diphosphate, and the double combination of the mutants, I-Y103S/II-I76G, gave a reaction product with longer prenyl chain up to C(50). These results suggest that medium-chain (E)-prenyl diphosphate synthases take a novel mode for the product chain length determination, in which both subunits cooperatively participate in maintaining and determining the product specificity of each enzyme.  相似文献   

10.
Octaprenyl pyrophosphate synthase (OPPs) catalyzes the sequential condensation of five molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to generate all-trans C40-octaprenyl pyrophosphate, which constitutes the side chain of ubiquinone. Due to the slow product release, a long-chain polyprenyl pyrophosphate synthase often requires detergent or another factor for optimal activity. Our previous studies in examining the activity enhancement of Escherichia coli undecaprenyl pyrophosphate synthase have demonstrated a switch of the rate-determining step from product release to isopentenyl pyrophosphate (IPP) condensation reaction in the presence of Triton [12]. In order to understand the mechanism of enzyme activation for E. coli OPPs, a single-turnover reaction was performed and the measured IPP condensation rate (2 s(-1)) was 100 times larger than the steady-state rate (0.02 s(-1)). The high molecular weight fractions and Triton could accelerate the steady-state rate by 3-fold (0.06 s(-1)) but insufficient to cause full activation (100-fold). A burst product formation was observed in enzyme multiple turnovers indicating a slow product release.  相似文献   

11.
Undecaprenyl diphosphate (UPP) synthase catalyzes the sequential cis-condensation of isopentenyl diphosphate (IPP) onto (E,E)-farnesyl diphosphate (FPP). In our previous reports on the Micrococcus luteus B-P 26 UPP synthase, we have shown that the conserved residues in the disordered region from Ser-74 to Val-85 is crucial for the binding of FPP and the catalytic function [Fujikura, K., et al. (2000) J. Biochem. (Tokyo) 128, 917-922] and the existence of a structural P-loop motif for the FPP binding site [Fujihashi, M., et al. (2001) Proc. Natl. Acad. Sci. U.S.A., 98, 4337-4342]. To elucidate the allylic substrate binding site in more detail, we prepared eight mutant enzymes and examined their kinetic behavior. The mutant with respect to the two complementarily conserved Arg residues among the structural P-loop motif, G32R-R42G, retained the activity and showed product distribution pattern exactly similar to that of the wild-type, indicating that the complementarily conserved Arg is important for maintaining the catalytic function. Substitutions of Asp-29, Arg-33, or Arg-80 with Ala resulted in a large loss of enzyme activity, suggesting that these residues are essential for catalytic function. However, the K(m) values of these mutant enzymes for Z-GGPP, which is the first intermediate during the enzymatic cis-condensations of IPP onto FPP, were only moderately different or little changed from those of the wild type. These results suggest that the binding site for the intermediate Z-GGPP having a cis double bond is different to that for the intrinsic allylic substrate, FPP, whose diphosphate moiety is recognized by the structural P-loop.  相似文献   

12.
The Escherichia coli undecaprayl-pyrophosphate synthase (UPPs) structure has been solved using the single wavelength anomalous diffraction method. The putative substrate-binding site is located near the end of the betaA-strand with Asp-26 playing a critical catalytic role. In both subunits, an elongated hydrophobic tunnel is found, surrounded by four beta-strands (betaA-betaB-betaD-betaC) and two helices (alpha2 and alpha3) and lined at the bottom with large residues Ile-62, Leu-137, Val-105, and His-103. The product distributions formed by the use of the I62A, V105A, and H103A mutants are similar to those observed for wild-type UPPs. Catalysis by the L137A UPPs, on the other hand, results in predominantly the formation of the C(70) polymer rather than the C(55) polymer. Ala-69 and Ala-143 are located near the top of the tunnel. In contrast to the A143V reaction, the C(30) intermediate is formed to a greater extent and is longer lived in the process catalyzed by the A69L mutant. These findings suggest that the small side chain of Ala-69 is required for rapid elongation to the C(55) product, whereas the large hydrophobic side chain of Leu-137 is required to limit the elongation to the C(55) product. The roles of residues located on a flexible loop were investigated. The S71A, N74A, or R77A mutants displayed 25-200-fold decrease in k(cat) values. W75A showed an 8-fold increase of the FPP K(m) value, and 22-33-fold increases in the IPP K(m) values were observed for E81A and S71A. The loop may function to bridge the interaction of IPP with FPP, needed to initiate the condensation reaction and serve as a hinge to control the substrate binding and product release.  相似文献   

13.
A prenyltransferase purified from the commercial rubber tree, Hevea brasiliensis, that elongates existing cis-polyisoprene rubber molecules also catalyzes the formation of all trans-farnesyl pyrophosphate (t,t-FPP) from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). In assays of the latter activity trans-geranyl pyrophosphate is the only other product identified. In contrast to this limited addition of IPP to DMAPP, we measured 7000 additions of isoprene per rubber molecule in a previous titration of active allylic ends of rubber molecules by purified prenyltransferase (Light, D. R., and Dennis, M. S. (1989) J. Biol. Chem. 264, 18589-18597). In order to confirm that purified prenyltransferase extensively elongates rubber molecules, doubly labeled [1-14C]isopentenyl [U-32P]pyrophosphate ([14C,32P]IPP) was synthesized. Using this reagent we show that both prenyltransferase purified from H. brasiliensis and prenyltransferase purified from avian liver (FPP synthase) add greater than 15 isoprene units to existing rubber molecules, consistent with the previous titration data. For confirmation that the prenyltransferase purified from H. brasiliensis adds isoprene units to rubber to make cis-polyisoprene, chirally tritiated [14C]IPP ([14C,2S-3H]IPP) was synthesized. Retention of the tritium label in FPP synthesized from [14C,2S-3H]IPP and DMAPP, geranyl pyrophosphate, or neryl pyrophosphate by prenyltransferase from H. brasiliensis or avian liver confirms trans addition to these substrates. In contrast, when [14C,2S-3H]IPP is incubated with serum-free rubber particles and prenyltransferase purified from H. brasiliensis, avian liver, or yeast, no tritium is incorporated into the rubber particles indicating cis addition. Thus, rubber particles have the ability to alter the stereoselective removal of the 2R-prochiral proton in favor of the removal of the 2S-prochiral proton. This apparent inversion of carbon 2 of IPP during the proton abstraction step by rubber particles represents a novel example of a switch in enzyme stereospecificity. In addition to being enzymatically similar to other prenyltransferases, rubber transferase also appears to be related immunologically to FPP synthases, since polyclonal antibodies to the H. brasiliensis prenyltransferase cross-react with the purified yeast prenyltransferase. In order to investigate potential primers of greater molecular weight than that of FPP, cis-undecaprenyl pyrophosphate (C55PP) was synthesized. C55PP stimulates the incorporation of [14C]IPP into rubber particles suggesting that it may prime new rubber molecules. However, in contrast to DMAPP, C55PP is not incorporated into any detectable products when incubated with prenyltransferase and [14C]IPP in the absence of rubber particles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Bisphosphonates (Bps), inhibitors of osteoclastic bone resorption, are used in the treatment of skeletal disorders. Recent evidence indicated that farnesyl pyrophosphate (FPP) synthase and/or isopentenyl pyrophosphate (IPP) isomerase is the intracellular target(s) of bisphosphonate action. To examine which enzyme is specifically affected, we determined the effect of different Bps on incorporation of [(14)C]mevalonate (MVA), [(14)C]IPP, and [(14)C]dimethylallyl pyrophosphate (DMAPP) into polyisoprenyl pyrophosphates in a homogenate of bovine brain. HPLC analysis revealed that the three intermediates were incorporated into FPP and geranylgeranyl pyrophosphate (GGPP). In contrast to clodronate, the nitrogen-containing Bps (NBps), alendronate, risedronate, olpadronate, and ibandronate, completely blocked FPP and GGPP formation and induced in incubations with [(14)C]MVA a 3- to 5-fold increase in incorporation of label into IPP and/or DMAPP. Using a method that could distinguish DMAPP from IPP on basis of their difference in stability in acid, we found that none of the NBps affected the conversion of [(14)C]IPP into DMAPP, catalyzed by IPP isomerase, excluding this enzyme as target of NBp action. On the basis of these and our previous findings, we conclude that none of the enzymes up- or downstream of FPP synthase are affected by NBps, and FPP synthase is, therefore, the exclusive molecular target of NBp action.  相似文献   

15.
Pan JJ  Chiou ST  Liang PH 《Biochemistry》2000,39(35):10936-10942
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes the condensation of eight molecules of isopentenyl pyrophosphate (IPP) with farnesyl pyrophosphate (FPP) to generate C(55) undecaprenyl pyrophosphate. We investigated the kinetics and mechanism of this reaction pathway using Escherichia coli UPPs. With a variety of different ratios of enzyme to substrate and FPP to IPP in the presence or absence of Triton, different product distributions were found. In the presence of excess FPP, the intermediates (C(25)-C(50)) accumulated. Under a condition with enzyme and FPP in excess of IPP, instead of C(20)-geranylgeranyl pyrophosphate, C(20), C(25), and C(30) were the major products. The UPPs steady-state k(cat) value (2.5 s(-1)) in the presence of 0.1% Triton was 190-fold larger than in the absence of Triton (0.013 s(-1)). The k(cat) value matched the rate constant of each IPP condensation obtained from the enzyme single-turnover experiments. This suggested that the IPP condensation rather than product release was the rate-limiting step in the presence of Triton. In the absence of Triton, the intermediates formed and disappeared in a similar manner under enzyme single turnover in contrast to the slow steady-state rate, which indicated a step after product generation was rate limiting. This was further supported by a burst product formation. Judging from the accumulation level of C(55), C(60), and C(65), their dissociation from the enzyme cannot be too slow and an even slower enzyme conformational change with a rate of 0.001 s(-1) might govern the UPPs reaction rate under the steady-state condition in the absence of Triton.  相似文献   

16.
Pan JJ  Yang LW  Liang PH 《Biochemistry》2000,39(45):13856-13861
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes condensation of eight molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to yield C(55)-undecaprenyl pyrophosphate. We have mutated the aspartates and glutamates in the five conserved regions (I to V) of UPPs protein sequence to evaluate their effects on substrate binding and catalysis. The mutant enzymes including D26A, E73A, D150A, D190A, E198A, E213A, D218A, and D223A were expressed and purified to great homogeneity. Kinetic analyses of these mutant enzymes indicated that the substitution of D26 in region I with alanine resulted in a 10(3)-fold decrease of k(cat) value compared to wild-type UPPs. Its IPP K(m) value has only minor change. The mutagenesis of D150A has caused a much lower IPP affinity with IPP K(m) value 50-fold larger than that of wild-type UPPs but did not affect the FPP K(m) and the k(cat). The E213A mutant UPPs has a 70-fold increased IPP K(m) value and has a 100-fold decreased k(cat) value compared to wild-type. These results suggest that D26 of region I is critical for catalysis and D150 in region IV plays a significant role of IPP binding. The E213 residue in region V is also important in IPP binding as well as catalysis. Other mutant UPPs enzymes in this study have shown no significant change (<5-fold) of k(cat) with exception of E73A and D218A. Both enzymes have 10-fold lower k(cat) value relative to wild-type UPPs.  相似文献   

17.
Undecaprenyl diphosphate synthase catalyzes the sequential condensation of eight molecules of isopentenyl diphosphate (IPP) in the cis-configuration into farnesyl diphosphate (FPP) to produce undecaprenyl diphosphate (UPP), which is indispensable for the biosynthesis of the bacterial cell wall. This cis-type prenyltransferase exhibits a quite different mode of binding of homoallylic substrate IPP from that of trans-type prenyltransferase [Kharel Y. et al. (2001) J. Biol. Chem. 276, 28459-28464]. In order to know the IPP binding mode in more detail, we selected six highly conserved residues in Regions III, IV, and V among nine conserved aromatic residues in Micrococcus luteus B-P 26 UPP synthase for substitution by site-directed mutagenesis. The mutant enzymes were expressed and purified to homogeneity, and then their effects on substrate binding and the catalytic function were examined. All of the mutant enzymes showed moderately similar far-UV CD spectra to that of the wild-type, indicating that none of the replacement of conserved aromatic residues affected the secondary structure of the enzyme. Kinetic analysis showed that the replacement of Tyr-71 with Ser in Region III, Tyr-148 with Phe in Region IV, and Trp-210 with Ala in Region V brought about 10-1,600-fold decreases in the kcat/Km values compared to that of the wild-type but the Km values for both substrates IPP and FPP resulted in only moderate changes. Substitution of Phe-207 with Ser in Region V resulted in a 13-fold increase in the Km value for IPP and a 1,000-2,000-fold lower kcat/Km value than those of the wild-type, although the Km values for FPP showed about no significant changes. In addition, the W224A mutant as to Region V showed 6-fold and 14-fold increased Km values for IPP and FPP, respectively, and 100-250-fold decreased kcat/Km values as compared to those of the wild-type. These results suggested that these conserved aromatic residues play important roles in the binding with both substrates, IPP and FPP, as well as the catalytic function of undecaprenyl diphosphate synthase.  相似文献   

18.
Allylic addition-elimination reactions are widely used in the enzyme-catalysed formation of terpenoid metabolites. It has earlier been shown that the isoprenoid chain elongation reaction catalysed by farnesyl pyrophosphate synthase involving successive condensations of dimethylallyl pyrophosphate (DMAPP) and geranyl pyrophosphate (GPP) with isopentenyl pyrophosphate (IPP) corresponds to such an SE' reaction with net syn stereochemistry for the sequential electrophilic addition and proton elimination steps. Studies of the enzymic cyclization of farnesyl pyrophosphate (FPP) to pentalenene have now established the stereochemical course of two additional biological SE' reactions. Incubation of both (9R)- and (9S)-[9-3H,4,8-14]FPP with pentalenene synthase and analysis of the resulting labelled pentalenene has revealed that H-9re of FPP becomes H-8 of pentalenene, while H-9si undergoes net intramolecular transfer to the adjacent carbon, becoming H-1re (H-1 alpha) of pentalenene, as confirmed by subsequent experiments with [10-2H, 11-13C]FPP. These results correspond to net anti-stereochemistry in the intramolecular allylic addition-elimination reaction. The stereochemical course of a second SE' reaction has now been examined by analogous incubations of (4S,8S)-[4,8-3H,4,8-14C]FPP and (4R,8R)-[4,8-3H, 4.8-14C]FPP with pentalenene synthase. Determination of the distribution of label in the derived pentalenenes showed stereospecific loss of the original H-8si proton. Analysis of the plausible conformation of the presumed reaction intermediates revealed that the stereochemical course of the latter reaction cannot properly be described as either syn or anti, since cyclization and subsequent double bond formation require significant internal motions to allow proper overlap of the scissile C-H bond with the developing carbocation.  相似文献   

19.
Octaprenyl diphosphate synthase (OPPs) and undecaprenyl diphosphate synthases (UPPs) catalyze consecutive condensation reactions of farnesyl diphosphate (FPP) with 5 and 8 isopentenyl diphosphate (IPP) to generate C40 and C55 products with trans- and cis-double bonds, respectively. In this study, we used IPP analogue, 3-bromo-3-butenyl diphosphate (Br-IPP), in conjunction with radiolabeled FPP, to probe the reaction mechanisms of the two prenyltransferases. Using this alternative substrate with electron-withdrawing bromo group at the C3 position to slow down the condensation step, trapping of farnesol in the OPPs reaction from radiolabeled FPP under basic condition was observed, consistent with a sequential mechanism. In contrast, UPPs reaction yielded no farnesyl carbocation intermediate under the same condition with radiolabeled FPP and Br-IPP, indicating a concerted mechanism. Our data demonstrate the different reaction mechanisms for cis- and tran-prenyltransferases although they share the same substrates.  相似文献   

20.
Directed evolution of farnesyl diphosphate (FPP, C15) synthase (IspA) of Escherichia coli was carried out by error-prone PCR with a color complementation screen utilizing C40 carotenoid pathway enzymes. This allowed IspA mutants with enhanced production of the C40 carotenoid precursor geranylgeranyl diphosphate (GGPP, C20) to be readily identified. Analysis of these mutants was carried out in order to better understand the mechanisms of product chain length specificity in this enzyme. The 12 evolved clones having enhanced C20 GGPP production have characteristic mutations in the conserved regions of prenyl diphosphate synthases (designated regions I through VII). Some of these mutations (I76T, Y79S, Y79H, C75Y, H83Y, and H83Q) are found near or before the conserved first aspartate rich motif (FARM), which is involved in the mechanism for chain elongation reaction of all prenyl synthases. Molecular modeling suggested a mechanism for chain length determination for these mutations including substitutions at the 1st and 9th amino acids upstream of the FARM that have not been reported previously. In addition, a mutation on a helix adjacent to the FARM within the substrate-binding pocket (D115G) suggests a novel mechanism for chain length determination. One mutant IspA clone carries a mutation of C155G at the 2nd amino acid upstream of conserved region IV (GQxxDL), which was recently found to be an important region controlling the chain elongation of a Type III GGPP synthase. One IspA clone carries mutations (T234A and T249I) near the conserved second aspartate rich motif (SARM). As a verification of the in vivo activity of the mutant clones (represented as C40 carotenoid formation), we confirmed the product distribution of wild-type and mutant IspA using an in vitro assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号