首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) play key roles in physiological and pathological responses in cardiac myocytes. The mechanisms whereby H(2)O(2)-modulated phosphorylation pathways regulate the endothelial isoform of nitric oxide synthase (eNOS) in these cells are incompletely understood. We show here that H(2)O(2) treatment of adult mouse cardiac myocytes leads to increases in intracellular Ca(2+) ([Ca(2+)](i)), and document that activity of the L-type Ca(2+) channel is necessary for the H(2)O(2)-promoted increase in sarcomere shortening and of [Ca(2+)](i). Using the chemical NO sensor Cu(2)(FL2E), we discovered that the H(2)O(2)-promoted increase in cardiac myocyte NO synthesis requires activation of the L-type Ca(2+) channel, as well as phosphorylation of the AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase kinase 1/2 (MEK1/2). Moreover, H(2)O(2)-stimulated phosphorylations of eNOS, AMPK, MEK1/2, and ERK1/2 all depend on both an increase in [Ca(2+)](i) as well as the activation of protein kinase C (PKC). We also found that H(2)O(2)-promoted cardiac myocyte eNOS translocation from peripheral membranes to internal sites is abrogated by the L-type Ca(2+) channel blocker nifedipine. We have previously shown that kinase Akt is also involved in H(2)O(2)-promoted eNOS phosphorylation. Here we present evidence documenting that H(2)O(2)-promoted Akt phosphorylation is dependent on activation of the L-type Ca(2+) channel, but is independent of PKC. These studies establish key roles for Ca(2+)- and PKC-dependent signaling pathways in the modulation of cardiac myocyte eNOS activation by H(2)O(2).  相似文献   

2.
Previous studies from this laboratory have demonstrated a critical role of cytosolic phospholipase A2 (cPLA2) and arachidonic acid in angiotensin II (Ang II) AT2 receptor-mediated signal transduction in renal epithelium. In primary proximal tubular epithelial cells exposed to hydrogen peroxide (H2O2), both the selective cPLA2 inhibitors and the cPLA2 antisense oligonucleotides significantly attenuated H2O2-induced arachidonic acid liberation and activation of p38(SAPK), ERK1/2, and Akt1. This H2O2-induced kinase activation was significantly attenuated by a Src kinase inhibitor PP2, or by transient transfection of carboxyl-terminal Src kinase (CSK) that maintained Src in the dormant form. Under basal conditions, Src coimmunoprecipitated with epidermal growth factor receptor (EGFR), while H2O2 increased EGFR phosphorylation in the complex. We observed that inhibition of EGFR kinase activity with AG1478 significantly attenuated H2O2-induced p38(SAPK) and ERK1/2 activation, but did not inhibit Akt1 activation. Furthermore, it seems that p38(SAPK) is upstream of ERK1/2 and Akt1, since a p38(SAPK) inhibitor SB203580 significantly blocked H2O2-induced activation of ERK1/2 and Akt1. Interestingly, overexpression of the dominant-negative p38(SAPK) isoform alpha inhibited ERK1/2 but not Akt1 activation. Our observations demonstrate that in these nontransformed cells, activation of cPLA2 is a converging point for oxidative stress and Ang II, which share common downstream signaling mechanisms including Src and EGFR. In addition, p38(SAPK) provides a positive input to both growth and antiapoptotic signaling pathways induced by acute oxidative stress.  相似文献   

3.
It has been shown that endogenous production of reactive oxygen species (ROS) during T cell activation regulates signaling events including MAPK activation. Protein tyrosine phosphatases (PTPs) have been regarded as targets of ROS which modify the catalytic cysteine residues of the enzymes. We have analyzed the interplay between the inhibition of PTPs and the activation of MAPK by H(2)O(2). Stimulation of Jurkat T cells with H(2)O(2) induces the phosphorylation of ERK, p38, and JNK members of MAPK family. H(2)O(2) stimulation of T cells was found to inhibit the PTP activity of CD45, SHP-1, and HePTP. Transfection of cells with wtSHP-1 decreased H(2)O(2)-induced ERK and JNK phosphorylation without affecting p38 phosphorylation. Transfection with wtHePTP inhibited H(2)O(2)-induced ERK and p38 phosphorylation without inhibiting JNK phosphorylation. The Src-family kinase inhibitor, PP2, inhibited the H(2)O(2)-induced phosphorylation of ERK, p38, and JNK. The phospholipase C (PLC) inhibitor, U73122, or the protein kinase C (PKC) inhibitor, Ro-31-8425, blocked H(2)O(2)-induced ERK phosphorylation, whereas the same treatment did not inhibit p38 or JNK phosphorylation. Taken together, these results suggest that inhibition of PTPs by H(2)O(2) contributes to the induction of distinct MAPK activation profiles via differential signaling pathways.  相似文献   

4.
Activation of protein kinase C (PKC) plays an important role in the negative regulation of receptor signaling, but its effect on insulin-like growth factor-1 (IGF-1) receptor signaling remains unclear. In this study, we characterized the intracellular pathways involved in IGF-1-induced activation of Akt and evaluated the effects of the PKC activator phorbol 12-myristate 13-acetate (PMA) on the Akt activation by IGF-1. IGF-1 induced a time- and concentration-dependent activation of Akt. The effect of IGF-1 was blocked by the phosphatidylinositide 3-kinase (PI3K) inhibitors LY294002 (50 micrometer) and wortmannin (0.5 micrometer), but not by the MEK inhibitor PD98059 (50 micrometer) or the p70 S6 kinase pathway inhibitor rapamycin (50 nm), suggesting that the stimulation of Akt by IGF-1 is mediated by the PI3K pathway. Interestingly, cotreatment with PMA (400 nm) attenuated IGF-1-induced activation of Akt. The attenuation was blocked completely by the PKC inhibitor GO6983 (0.5 micrometer), but only partially by the MEK inhibitor PD98059 (50 micrometer), indicating that MAPK-dependent and -independent pathways are involved. PMA induced the activation of PKC in PC12 cells, and this induction was blocked by GO6983. These data further support the role of PKC in the effect of PMA. Moreover, PKCdelta is likely involved in the action of PMA on the basis of data obtained using isoform-specific inhibitors such as rottlerin. PMA also decreased IGF-1-induced tyrosine phosphorylation of insulin receptor substrate-1 and its association with PI3K. Taken together, these results suggest, for the first time, that stimulation of PKC modulates IGF-1-induced activation of Akt.  相似文献   

5.
We examined the signaling pathways regulating glycogen synthase (GS) in primary cultures of rat hepatocytes. The activation of GS by insulin and glucose was completely reversed by the phosphatidylinositol 3-kinase inhibitor wortmannin. Wortmannin also inhibited insulin-induced phosphorylation and activation of protein kinase B/Akt (PKB/Akt) as well as insulin-induced inactivation of GS kinase-3 (GSK-3), consistent with a role for the phosphatidylinositol 3-kinase/PKB-Akt/GSK-3 axis in insulin-induced GS activation. Although wortmannin completely inhibited the significantly greater level of GS activation produced by the insulin-mimetic bisperoxovanadium 1,10-phenanthroline (bpV(phen)), there was only minimal accompanying inhibition of bpV(phen)-induced phosphorylation and activation of PKB/Akt, and inactivation of GSK-3. Thus, PKB/Akt activation and GSK-3 inactivation may be necessary but are not sufficient to induce GS activation in rat hepatocytes. Rapamycin partially inhibited the GS activation induced by bpV(phen) but not that effected by insulin. Both insulin- and bpV(phen)-induced activation of the atypical protein kinase C (zeta/lambda) (PKC (zeta/lambda)) was reversed by wortmannin. Inhibition of PKC (zeta/lambda) with a pseudosubstrate peptide had no effect on GS activation by insulin, but substantially reversed GS activation by bpV(phen). The combination of this inhibitor with rapamycin produced an additive inhibitory effect on bpV(phen)-mediated GS activation. Taken together, our results indicate that the signaling components mammalian target of rapamycin and PKC (zeta/lambda) as well as other yet to be defined effector(s) contribute to the modulation of GS in rat hepatocytes.  相似文献   

6.
Kim DI  Lim SK  Park MJ  Han HJ  Kim GY  Park SH 《Life sciences》2007,80(7):626-632
Glucose transporters have been reported to be associated with the development of diabetic retinopathy. Retinal pigment epithelial cells (RPEs) are believed to play an important role in the pathogenesis of diabetic retinopathy. However, the effect of hyperglycemia on glucose transporters in RPEs and the related signal pathways have not yet been elucidated. Therefore, we examined the effect of high glucose on the glucose transporter 1 in ARPEs and the related signal molecules. In the present study, high glucose decreased 2-deoxyglucose uptake in a time (>2 h) and dose dependent manner. In addition, we found that high glucose downregulated the expression of glucose transporter 1 (GLUT-1). The high glucose-induced downregulation of GLUT-1 was blocked by Wortmanin, LY 294002 (PI-3 kinase inhibitors) and Akt (Akt inhibitor). The high glucose increased stimulation of Akt activation in a time dependent manner. We also investigated the upstream regulator of Akt activation. The high glucose-induced phosphorylation of Akt was blocked by bisindolymaleimide I, H-7, staurosporine (protein kinase C [PKC] inhibitors), vitamin C and catalase (antioxidants). In addition, the high glucose-induced downregulation of GLUT-1 was also blocked by PKC inhibitors and antioxidants. Moreover, high glucose increased lipid peroxide formation, which was prevented by PKC inhibitors. In conclusion, high glucose downregulated GLUT-1 by Akt pathway activation mediated by the PKC-oxidative stress signaling pathway in ARPE cells.  相似文献   

7.
Salvianolic acid A (Sal A) is a polyphenol extracted from the root of the Salvia miltiorrhiza bunge. Hydrogen peroxide (H(2)O(2)) is a major reactive oxygen species (ROS), which has been implicated in stroke and other neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In this study, we investigated the neuroprotective effects of Sal A in human SH-SY5Y neuroblastoma cells against H(2)O(2)-induced injury. Our results showed that cells pretreated with Sal A exhibited enhanced neuronal survival and that this protection was associated with an increase in adenosine triphosphate (ATP) and the stabilization of mitochondrial membrane potential. In addition, Sal A markedly decreased the excessive activation AMP-activated protein kinase (AMPK) and the serine-threonine protein kinase, Akt, in SH-SY5Ycells induced by H(2)O(2). In conclusion, our results demonstrated that Sal A protects SH-SY5Y cells against H(2)O(2)-induced oxidative stress and these protective effects are related to stress tolerance and not energy depletion via inhibition of the AMPK and Akt signaling pathway.  相似文献   

8.
Skin keratinocytes are subject to frequent chemical and physical injury and have developed elaborate cell survival mechanisms to compensate. Among these, the Akt/protein kinase B (PKB) pathway protects keratinocytes from the toxic effects of ultraviolet light (UV). In contrast, the protein kinase C (PKC) family is involved in several keratinocyte death pathways. During an examination of potential interactions among these two pathways, we found that the insulin-like growth factor (IGF-1) activates both the PKC and the Akt signaling pathways in cultured primary mouse keratinocytes as indicated by increased phospho-PKC and phospho-Ser-473-Akt. IGF-1 also selectively induced translocation of PKCdelta and PKCepsilon from soluble to particulate fractions in mouse keratinocytes. Furthermore, the PKC-specific inhibitor, GF109203X, increased IGF-1-induced phospho-Ser-473-Akt and Akt kinase activity and enhanced IGF-1 protection from UVC-induced apoptosis. Selective activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) reduced phospho-Ser-473-Akt, suggesting that activation of PKC inhibits Akt activity. TPA also attenuated IGF-1 and epidermal growth factor-induced phospho-Ser-473-Akt, reduced Akt kinase activity, and blocked IGF-1 protection from UVC-induced apoptosis. The inhibition of Akt activity by TPA was reduced by inhibitors of protein phosphatase 2A, and TPA stimulated the association of phosphatase 2A with Akt. Individual PKC isoforms were overexpressed in cultured keratinocytes by transduction with adenoviral vectors or inhibited with PKC-selective inhibitors. These studies indicated that PKCdelta and PKCepsilon were selectively potent at causing dephosphorylation of Akt and modifying cell survival, whereas PKCalpha enhanced phosphorylation of Akt on Ser-473. Our results suggested that activation of PKCdelta and PKCepsilon provide a negative regulation for Akt phosphorylation and kinase activity in mouse keratinocytes and serve as modulators of cell survival pathways in response to external stimuli.  相似文献   

9.
In this study, we demonstrate that interleukin-4 (IL-4) protects human hepatocellular carcinoma (HCC) cell line Hep3B from apoptosis induced by transforming growth factor-β (TGF-β). Further investigation of IL-4-transduced signaling pathways revealed that both insulin response substrate 1 and 2 (IRS-1/-2) and extracellular signal-regulated kinase (ERK) pathways were activated after IL-4 stimulation. The IRS-1/-2 activation was accompanied by the activation of phosphotidylinositol-3-kinase (PI3K), leading to Akt and p70 ribosomal protein S6 kinase (p70S6K). Interestingly, a protein kinase C (PKC) inhibitor, Gö6976, inhibited the phosphorylation of Akt, suggesting that the Akt activation was PKC-dependent. Using specific inhibitors for PI3K or ERK, we demonstrated that the PI3K pathway, but not the ERK pathway, was required for protection. The constitutively active form of PI3K almost completely rescued TGF-β-induced apoptosis, further supporting the importance of the PI3K pathway in the protective effect of IL-4. Furthermore, a dominant negative Akt and/or Gö6976 only partially blocked the anti-apoptotic effect of IL-4. Similarly, rapamycin, which interrupted the activation of p70S6K, also only partially blocked the protective effect of IL-4. However, in the presence of both rapamycin and dominant negative Akt with or without Gö6976, IL-4 almost completely lost the anti-apoptotic effect, suggesting that both Akt and p70S6K pathways were required for the protective effect of IL-4 against TGF-β-induced apoptosis.  相似文献   

10.
N-acetylglucosaminyltransferase III (GnT-III) is a key enzyme that inhibits the extension of N-glycans by introducing a bisecting N-acetylglucosamine residue. Our previous studies have shown that modification of N-glycans by GnT-III affects a number of intracellular signaling pathways. In this study, the effects of GnT-III on the cellular response to reactive oxygen species (ROS) were examined. We found that an overexpression of GnT-III suppresses H(2)O(2)-induced apoptosis in HeLaS3 cells. In the case of GnT-III transfectants, activation of Jun N-terminal kinase (JNK) following H(2)O(2) treatment was markedly reduced compared with control cells. Either the depletion of protein kinase C (PKC) by prolonged treatment with phorbol 12-myristate 13-acetate or the inhibition of PKC by the specific inhibitor H7 attenuated the H(2)O(2)-induced activation of JNK1 and apoptosis in control cells but not in the GnT-III transfectants. Furthermore, we found that H(2)O(2)-induced phosphorylation of PKC delta was markedly suppressed in GnT-III transfectants. Rottlerin, a specific inhibitor of PKC delta, significantly inhibited H(2)O(2)-induced activation of JNK1 in control cells, indicating that PKC delta is involved in the pathway. These findings suggest that the overexpression of GnT-III suppresses H(2)O(2)-induced activation of PKC delta-JNK1 pathway, resulting in inhibition of apoptosis.  相似文献   

11.
Hydrogen peroxide (H2O2) activates signaling cascades essential for cell proliferation via phosphatidylinositol-3-kinase (PI3K) and Akt. Here we show that induction of mitogenic signaling by H2O2 activates sequentially PI3K, Akt, mammalian target of rapamycin (mTOR), and Ran protein. Akt activation is followed by signaling through the mTOR kinase and upregulation of Ran in primary type II pneumocytes, a cell type implicated in the development of lung adenocarcinoma. Pretreatment of the cells with wortmannin, a specific inhibitor of PI3K, or rapamycin, a specific inhibitor of mTOR kinase, prevented H2O2-increased mitosis. H2O2-induced Akt ser-473 phosphorylation and upregulation of Ran protein were prevented by wortmannin but not by rapamycin, indicating that PI3K is upstream of Akt and mTOR is downstream from Akt. Overexpression of myr-Akt or Ran-wt in type II pneumocytes increased Akt ser-473 phosphorylation and mitosis in a catalase-dependent manner, indicating that H2O2 is essential for Akt and Ran signaling. These results indicate that H2O2-induced mitogenic signaling in primary type II pneumocytes is mediated by PI3K, Akt, mTOR-kinase, and Ran protein.  相似文献   

12.
Reactive oxygen species (ROS) have been implicated in the regulation of NF-kappaB activation, which plays an important role in inflammation and cell survival. However, the molecular mechanisms of ROS in NF-kappaB activation remain poorly defined. We found that the non-provitamin A carotenoid, lutein, decreased intracellular H(2)O(2) accumulation by scavenging superoxide and H(2)O(2) and the NF-kappaB-regulated inflammatory genes, iNOS, TNF-alpha, IL-1beta, and cyclooxygenase-2, in lipopolysaccharide (LPS)-stimulated macrophages. Lutein inhibited LPS-induced NF-kappaB activation, which highly correlated with its inhibitory effect on LPS-induced IkappaB kinase (IKK) activation, IkappaB degradation, nuclear translocation of NF-kappaB, and binding of NF-kappaB to the kappaB motif of the iNOS promoter. This compound inhibited LPS- and H(2)O(2)-induced increases in phosphatidylinositol 3-kinase (PI3K) activity, PTEN inactivation, NF-kappaB-inducing kinase (NIK), and Akt phosphorylation, which are all upstream of IKK activation, but did not affect the interaction between Toll-like receptor 4 and MyD88 and the activation of mitogen-activated protein kinases. The NADPH oxidase inhibitor apocynin and gp91(phox) deletion reduced the LPS-induced NF-kappaB signaling pathway as lutein did. Moreover, lutein treatment and gp91(phox) deletion decreased the expressional levels of the inflammatory genes in vivo and protected mice from LPS-induced lethality. Our data suggest that H(2)O(2) modulates IKK-dependent NF-kappaB activation by promoting the redox-sensitive activation of the PI3K/PTEN/Akt and NIK/IKK pathways. These findings further provide new insights into the pathophysiological role of intracellular H(2)O(2) in the NF-kappaB signal pathway and inflammatory process.  相似文献   

13.
The reported studies on the metabolism in chicken hepatocytes in comparison with those of mammals are quite different. Therefore, this study examined the effect of EGF on DNA synthesis along with its related signal cascades in primary cultured chicken hepatocytes. EGF stimulated DNA synthesis in a dose (> or =10 ng/ml)-dependent manner, which correlated with the increase in CDK-2 and CDK-4 expression. The EGF-induced increase in [3H]-thymidine incorporation was blocked by AG 1478 (an EGF receptor tyrosine kinase antagonist), genistein, and herbimycin A (tyrosine kinase inhibitors), suggesting a role in the activation and tyrosine phosphorylation of the EGF receptor. In addition, the EGF-induced stimulation of [3H]-thymidine incorporation was prevented by staurosporine, H-7, or bisindolylmaleimide I (protein kinase C inhibitors), suggesting a role of PKC. In addition, PD 98059 (a MEK inhibitor), SB 203580 (a p38 MAPK inhibitor), and SP 600125 (a JNK inhibitor) blocked the EGF-induced stimulation of [3H]-thymidine incorporation and CDK-2/4 expression. Indeed, EGF increased the translocation of PKC from the cytosol to the membrane fraction, and increased the activation of p44/42 MAPK, p38 MAPK, and JNK. Moreover, EGF increased the CDK-2, CDK-4, cyclin D1, and cyclin E expression levels but decreased the p21 and p27 expression levels. These EGF-induced increases were blocked by an EGF receptor antagonist, tyrosine kinase inhibitors, PKC inhibitors, and MAPKs inhibitors. In conclusion, EGF stimulates DNA synthesis of primary cultured chicken hepatocytes via Ca2+/PKC and the MAPKs signaling pathways.  相似文献   

14.
Although both tumor necrosis factor (TNF) and H2O2 induce activation of c-Jun N-terminal kinase (JNK) kinase cascades, it is not known whether they utilize distinct intracellular signaling pathways. In this study, we first examined a variety of pharmacological inhibitors on TNF and H2O2-induced JNK activation. Go6983 or staurosporine, which inhibits protein kinase C isoforms had no effects on TNF or H2O2-induced JNK activation. However, Go6976 and calphostin, which can inhibit protein kinase C as well as protein kinase D (PKD), blocked H2O2- but not TNF-induced JNK activation, suggesting that PKD may be specifically involved in H2O2-induced JNK activation. Consistently, H2O2, but not TNF, induced phosphorylation of PKD and translocation of PKD from endothelial cell membrane to cytoplasm where it associates with the JNK upstream activator, apoptosis signal-regulating kinase 1 (ASK1). The association is mediated through the pleckstrin homology domain of PKD and the C-terminal domain of ASK1. Inhibition of PKD by Go6976 or by small interfering RNA of PKD blocked H2O2-induced ASK1-JNK activation and endothelial cell apoptosis. Interestingly, H2O2 induced 14-3-3 binding to PKD via the phospho-Ser-205/208 and phospho-Ser-219/223 and H2O2-induced 14-3-3 binding of PKD was specifically blocked by Go6976 but not by Go6983. More significantly, the 14-3-3-binding defective forms of PKD failed to associate with ASK1 and to activate JNK signaling, highlighting the importance of 14-3-3 binding of PKD in H2O2-induced activation of ASK1-JNK cascade. Thus, our data have identified PKD as a critical mediator in H2O2- but not TNF-induced ASK1-JNK signaling.  相似文献   

15.
Endothelial nitric-oxide synthase (eNOS) is an important component of vascular homeostasis. During vascular disease, endothelial cells are exposed to excess reactive oxygen species that can alter cellular phenotype by inducing various signaling pathways. In the current study, we examined the implications of H(2)O(2)-induced signaling for eNOS phosphorylation status and activity in porcine aortic endothelial cells. We found that H(2)O(2) treatment enhanced eNOS activity and NO bioactivity as determined by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline and cellular cGMP content. Concomitant with eNOS activation, H(2)O(2) also activated Akt, increased eNOS phosphorylation at Ser-1177, and decreased eNOS phosphorylation at Thr-495. H(2)O(2)-induced promotion of eNOS activity and modulation of the eNOS phosphorylation status at Ser-1177 and Thr-495 were significantly attenuated by selective inhibitors of Src kinase, the ErbB receptor family, and phosphoinositide 3-kinase (PI 3-K). We found that Akt activation, eNOS Ser-1177 phosphorylation, and eNOS activation by H(2)O(2) were calcium-dependent, whereas eNOS dephosphorylation at Thr-495 was not, suggesting a branch point in the signaling cascade downstream from PI 3-K. Consistent with this, overexpression of a dominant negative isoform of Akt inhibited H(2)O(2)-induced phosphorylation of eNOS at Ser-1177 but not dephosphorylation of eNOS at Thr-495. Together, these data indicate that H(2)O(2) promotes calcium-dependent eNOS activity through a coordinated change in the phosphorylation status of the enzyme mediated by Src- and ErbB receptor-dependent PI 3-K activation. In turn, PI 3-K mediates eNOS Ser-1177 phosphorylation via a calcium- and Akt-dependent pathway, whereas eNOS Thr-495 dephosphorylation does not involve calcium or Akt. This response may represent an attempt by endothelial cells to maintain NO bioactivity under conditions of enhanced oxidative stress.  相似文献   

16.
The role of phospholipase D (PLD) activation in hydrogen peroxide (H(2)O(2))-induced signal transduction and cellular responses is not completely understood. Here we present evidence that Ca(2+)-dependent tyrosine kinase, Pyk2, requires PLD activation to mediate survival pathways in rat pheochromocytoma PC12 cells under oxidative stress. The H(2)O(2)-induced phosphorylation of two Pyk2 sites (Tyr(580), and Tyr(881)) was suppressed by 1-butanol, an inhibitor of transphosphatidylation by PLD, and also by transfection of catalytically negative mouse PLD2K758R (PLD2KR). Furthermore, we found that PLD2 was associated with Pyk2 and Src, and that activation of PLD2 was required for H(2)O(2)-enhanced association of Src with Pyk2 leading to full activation of Pyk2. H(2)O(2)-induced phosphorylation of Akt and p70S6K was dependent on phosphatidylinositol 3-kinase (PI3K) activity and was abolished by 1-butanol but not t-butanol. Furthermore, the PI3K/Akt activation in response to H(2)O(2) was reduced by transfection of either PLD2KR or the dominant negative Pyk2DN. This study is the first demonstration that PLD2 activation is implicated in Src-dependent phosphorylation of Pyk2 (Tyr(580) and Tyr(881)) by promoting the complex formation between Pyk2 and activated Src in PC12 cells exposed to H(2)O(2), thereby resulting in activation of the survival signaling pathway PI3K/Akt/p70S6K.  相似文献   

17.
18.
The serine/threonine kinase Akt (also known as protein kinase B) is activated in response to various stimuli by a mechanism involving phosphoinositide 3-kinase (PI3-K). Akt provides a survival signal that protects cells from apoptosis induced by growth factor withdrawal, but its function in other forms of stress is less clear. Here we investigated the role of PI3-K/Akt during the cellular response to oxidant injury. H(2)O(2) treatment elevated Akt activity in multiple cell types in a time- (5-30 min) and dose (400 microM-2 mm)-dependent manner. Expression of a dominant negative mutant of p85 (regulatory component of PI3-K) and treatment with inhibitors of PI3-K (wortmannin and LY294002) prevented H(2)O(2)-induced Akt activation. Akt activation by H(2)O(2) also depended on epidermal growth factor receptor (EGFR) signaling; H(2)O(2) treatment led to EGFR phosphorylation, and inhibition of EGFR activation prevented Akt activation by H(2)O(2). As H(2)O(2) causes apoptosis of HeLa cells, we investigated whether alterations of PI3-K/Akt signaling would affect this response. Wortmannin and LY294002 treatment significantly enhanced H(2)O(2)-induced apoptosis, whereas expression of exogenous myristoylated Akt (an activated form) inhibited cell death. Constitutive expression of v-Akt likewise enhanced survival of H(2)O(2)-treated NIH3T3 cells. These results suggest that H(2)O(2) activates Akt via an EGFR/PI3-K-dependent pathway and that elevated Akt activity confers protection against oxidative stress-induced apoptosis.  相似文献   

19.
Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor tyrosine kinase activation by H2O2 involving a metalloprotease-dependent generation of heparin-binding EGF-like growth factor (HB-EGF) and protein kinase C (PKC)-delta activation, respectively. H2O2-induced EGF receptor tyrosine phosphorylation was inhibited by a metalloprotease inhibitor, whereas the inhibitor had no effect on H2O2-induced JAK2 tyrosine phosphorylation. HB-EGF neutralizing antibody inhibited H2O2-induced EGF receptor phosphorylation. In COS-7 cells expressing an HB-EGF construct tagged with alkaline phosphatase, H2O2 stimulates HB-EGF production through metalloprotease activation. By contrast, dominant negative PKC-delta transfection inhibited H2O2-induced JAK2 phosphorylation but not EGF receptor phosphorylation. Dominant negative PYK2 inhibited H2O2-induced JAK2 activation but not EGF receptor activation, whereas dominant negative PKC-delta inhibited PYK2 activation by H2O2. These data demonstrate the presence of distinct tyrosine kinase activation pathways (PKC-delta/PYK2/JAK2 and metalloprotease/HB-EGF/EGF receptor) utilized by H2O2 in VSMCs, thus providing unique therapeutic targets for cardiovascular diseases.  相似文献   

20.
Angiotensin II, a hypertrophic/anti-apoptotic hormone, utilizes reactive oxygen species (ROS) as growth-related signaling molecules in vascular smooth muscle cells (VSMCs). Recently, the cell survival protein kinase Akt/protein kinase B (PKB) was proposed to be involved in protein synthesis. Here we show that angiotensin II causes rapid phosphorylation of Akt/PKB (6- +/- 0.4-fold increase). Exogenous H(2)O(2) (50-200 microM) also stimulates Akt/PKB phosphorylation (maximal 8- +/- 0.2-fold increase), suggesting that Akt/PKB activation is redox-sensitive. Both angiotensin II and H(2)O(2) stimulation of Akt/PKB are abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitors wortmannin and LY294002 (2(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), suggesting that PI3-K is an upstream mediator of Akt/PKB activation in VSMCs. Furthermore, diphenylene iodonium, an inhibitor of flavin-containing oxidases, or overexpression of catalase to block angiotensin II-induced intracellular H(2)O(2) production significantly inhibits angiotensin II-induced Akt/PKB phosphorylation, indicating a role for ROS in agonist-induced Akt/PKB activation. In VSMCs infected with dominant-negative Akt/PKB, angiotensin II-stimulated [(3)H]leucine incorporation is attenuated. Thus, our studies indicate that Akt/PKB is part of the remarkable spectrum of angiotensin II signaling pathways and provide insight into the highly organized signaling mechanisms coordinated by ROS, which mediate the hypertrophic response to angiotensin II in VSMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号