首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Growth of Pseudomonas C on C1 compounds: a correction.   总被引:1,自引:0,他引:1       下载免费PDF全文
On reexamination Pseudomonas C was found to be incapable of growth on formaldehyde or formate as a sole carbon source and to contain a hexose phosphate synthase activity when grown on methanol.  相似文献   

13.
A series of nitrobenzene compounds has been discovered as potent inhibitors of VCAM-1 expression and, therefore, potential drug candidates for autoimmune and allergic inflammatory diseases. Structure-activity relationship (SAR) studies showed that a nitro group and two other electron-withdrawing groups are essential for these compounds to be potent inhibitors of VCAM-1 expression.  相似文献   

14.
Several 1- and 2-carbon halogenated aliphatic organic compounds present at low concentrations (less than 100 micrograms/liter) were degraded under methanogenic conditions in batch bacterial cultures and in a continuous-flow methanogenic fixed-film laboratory-scale column. Greater than 90% degradation was observed within a 2-day detention time under continuous-flow methanogenic conditions with acetate as a primary substrate. Carbon-14 measurements indicated that chloroform, carbon tetrachloride, and 1,2-dichloroethane were almost completely oxidized to carbon dioxide, confirming removal by biooxidation. The initial step in the transformations of tetrachloroethylene and 1,1,2,2-tetrachloroethane to nonchlorinated end products appeared to be reductive dechlorination to trichloroethylene and 1,1,2-trichloroethane, respectively. Transformations of the brominated aliphatic compounds appear to be the result of both biological and chemical processes. The data suggest that transformations of halogenated aliphatic compounds can occur under methanogenic conditions in the environment.  相似文献   

15.
16.
17.
18.
19.
20.
Washed cell suspensions ofHyphomicrobium spp. were able to oxidize methanol, formaldehyde and formate. This suggested that enzymes for the oxidation of these compounds were present. The pathway of the oxidation of methanol to carbon dioxide and water has been investigated using cell-free extracts. An ammonium-ion-activated, phenazine methosulphate-linked methanol dehydrogenase was detected. This enzyme has a dual substrate specificity for normal primary alcohols and formaldehyde. It has a high pH optimum for activity of 9.5. The pathway is completed by an NAD-linked formate dehydrogenase. This enzyme is inhibited by low concentrations of potassium cyanide, copper sulphate and hypophosphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号