首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Apoptosis is thought to be involved in the maintenance of cellular homeostasis, as well as various pathological processes. However, little information is available about the regulation of apoptosis during the aggregation stage of P19 embryonal carcinoma (EC) cells. Here we report that aggregation-induced apoptosis is markedly attenuated by treatment with retinoic acid (RA). PTEN (phosphatase and tensin homolog deleted on chromosome 10) expression was down-regulated during the aggregation phase of P19 EC cells in the presence, but not in the absence, of RA. Suppression of PTEN expression during the aggregation was accompanied by increased phosphorylation of serine/threonine kinase Akt and glycogen synthase kinase-3beta (GSK-3beta). Our results suggest that RA attenuates the induction of apoptosis during the aggregation phase of P19 EC cells, probably by suppressing PTEN expression.  相似文献   

3.
The P19 embryonal carcinoma cell line represents a pluripotential stem cell that can differentiate along the neural or muscle cell lineage when exposed to different environments. Exposure to retinoic acid induces P19 cells to differentiate into neurons and astrocytes that express similar developmental markers as their embryonic counterparts. We examined the expression of gap junction genes during differentiation of these stem cells into neurons and astrocytes. Untreated P19 cells express at least two gap junction proteins, connexins 26 and 43. Connexin32 could not be detected in these cells. Treatment for 96 hr with 0.3 mM retinoic acid induced the P19 cells to differentiate first into neurons followed by astrocytes. Retinoic acid produced a decrease in connexin43 mRNA, protein, and functional gap junctions. Connexin26 message was not affected by retinoic acid treatment. The neurons that developed consisted of small round cell bodies extending two to three neurites and expressed MAP2. Connexin26 was detected at sites of cell–cell and cell–neurite contact within 3 days following differentiation with retinoic acid. The astrocytes were examined for production of their intermediate filament marker, glial fibrillary acidic protein (GFAP). GFAP was first detected at 8 days by Western blotting. In culture, astrocytes co-expressed GFAP and connexin43 similar to primary cultures of mouse brain astrocytes. These results suggest that differentiation of neurons and glial cells involves specific connexin expression in each cell type. The P19 cell line will provide a valuable model with which to examine the role gap junctions play during differentiation events of developing neurons and astrocytes. Dev. Genet. 21:187–200, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca2+]i) via calcium influx through nAChR channels whereas intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of Galphaq/11-coupled M1, M3 and M5 receptors and intracellular calcium stores, whereas Galphai/o-protein coupled M2 receptor activity mediated neuronal differentiation.  相似文献   

5.
6.
7.
We have found that the gene expression of the ninth member of the fibroblast growth factor (FGF) family, FGF9 was induced during retinoic acid(RA)-induced neuronal differentiation of murine embryonal carcinoma P19 cells. We have reported here the nucleotide sequence of the mouse FGF9 cDNA. The murine cDNA showed 92.4% nucleotide sequence homology to the human FGF9 cDNA and 98.2% homology to that of rats. This mouse FGF9 cDNA encoded a polypeptide consisting of 208 amino acids with amino acid sequence identical to that of rats. Only one amino acid was replaced compared to the human homolog. The highly conserved sequence homology of FGF9 suggests its functional importance. FGF9 was originally isolated from a culture medium of a human glioma cell line as a growth-promoting factor for glial cells [5]. Upon induction of neuronal differentiation by forming cell aggregates with 10−6 M RA, the gene expression of FGF9 was increased biphasically during the first 96 hours when cells were aggregating and from 168 hours to 192 hours followed by plating onto a tissue culture dish as glia-like cells proliferated. Neither undifferentiated P19 cells nor the cells aggregated without RA remaining undifferentiated expressed FGF9. This indicates that RA regulates the gene expression of FGF9 that may play an important role in neuronal differentiation in both early and late developmental process.  相似文献   

8.
Botulinum neurotoxins (BoNTs) inhibit neurotransmitter release at peripheral nerve terminals. They are serologically classified from A to G, C/D and D/C mosaic neurotoxins forming further subtypes of serotypes C and D. Cultured primary neurons, as well as neuronal cell lines such as PC12 and Neuro-2a, are often utilized in cell-based experiments on the toxic action of botulinum toxins. However, there are very few reports of the use of neural cell lines for studying BoNTs/C and D. In addition, the differentiated P19 neuronal cell line, which possesses cholinergic properties, has yet to be tested for its susceptibility to BoNTs. Here, the responsiveness of differentiated P19 cells to BoNT/C and BoNT/DC is reported. Both BoNT/C and BoNT/DC were shown to effectively bind to, and be internalized by, neurons derived from P19 cells. Subsequently, the intracellular substrates for BoNT/C and BoNT/DC were cleaved by treatment of the cells with the toxins in a ganglioside-dependent manner. Moreover, P19 neurons exhibited high sensitivity to BoNT/C and BoNT/DC, to the same extent as cultured primary neurons. These findings suggest that differentiated P19 cells possess full sensitivity to BoNT/C and BoNT/DC, thus making them a novel susceptible cell line for research into BoNTs.  相似文献   

9.
P19 embryonal carcinoma cells were examined under different conditions of embryoid body (EB) formation to evaluate endothelial differentiation. A prominent capillary-like network including PECAM-1 positive cells and upregulated expression of endothelial markers Tie-1, Tie-2, Flk-1 and PECAM-1 were identified in the DMSO-treated group during EB formation as well as after VEGF treatment. About 4% of the P19 cells differentiated into PECAM-1 positive cells on day 14 of differentiation. These results suggest that the P19 cells have the potential for endothelial cell differentiation and provide a new model system for future research.  相似文献   

10.
11.
12.
Summary Heat shock proteins (HSPs) have been recognized as molecules that maintain cellular homeostasis during changes in the environment. Here we report that HSP90 functions not only in stress responses but also in certain aspects of cellular differentiation. We found that HSP90 slowed remarkably high expression in undifferentiated human embryonal carcinoma (EC) cells, which were subsequently dramatically down-regulated during in vitro cellular differentiation, following retinoic acid (RA) treatment, at the protein level. Surprisingly, heat shock treatment also triggered the down-regulation of HSP90 within 48 h at the protein level. Furthermore, the heat treatment induced cellular differentiation into neural cells. This down-regulation of HSP90 by heat treatment was shifted to an up-regulation attern after cellular differentiation in response to RA treatment. In order to clarify the functions of HSP90 in cellular differentiation, we conducted various experiments, including overexpression of HSP90 via gene transfer. We showed that the RA-induced differentiation of EC cells into a neural cell lineage was inhibited by overexpression of the HSP90α or-β isoform via the gene transfer method. On the other hand, the overexpression of HSP90β alone impaired cellular differentiation into trophoectoderm. These results show that down-regulation of HSP90 is a physiological critical event in the differentiation of human EC cells and that specific HSP90 isoforms may be involved in differentiation into specific cell lineages.  相似文献   

13.
We have previously demonstrated that three potent iron chelators, hinokitiol, dithizone and deferoxamine, induce differentiation of F9 embryonal carcinoma cells, as do other well-known morphogens such as retinoic acid (RA) and sodium butyrate (NaB). In this study, we compared the patterns of cell proliferation, cell death and cell cycle arrest during the process of differentiation induced by these five agents. When F9 cells were cultured with the agents at their individual differentiation-inducing concentrations, cell proliferation was rapidly inhibited by treatment with the iron chelators and NaB. In contrast, RA did not influence the rate of increase of cell number at the concentration of 1 microm. The three chelators also caused a marked reduction in cell viability, and the treated cells exhibited internucleosomal DNA fragmentation, whereas cells treated with NaB showed no apoptotic characteristics. RA induced apoptosis weakly at 1 microm and strongly at higher concentrations. In addition, all the iron chelators hindered cell cycle progression, resulting in an arrest at the G1-S interface or S phase. The phenomena observed in chelator-treated cells were considerably different from those in RA- or NaB-treated cells. It is concluded that the three iron chelators cause both severe apoptotic cell death and cell cycle arrest of proliferating F9 cells via cellular iron deprivation, and that this apoptotic change may be independent of the process of differentiation.  相似文献   

14.
MicroRNAs (or miRNAs) are small non-coding RNAs (21-25 nucleotides) that are involved in a wide range of activities related to the development and differentiation of cells. Comparison of the miRNA expression profiles of mouse P19 embryonic carcinoma cells with those of differentiated neural stem cells showed that the expression level of 65 miRNAs changed (2-fold) after differentiation. MiR-124a was dramatically upregulated (more than 20-fold) while miRNAs of the miR-302 family and those in the miR-290-295 cluster were strongly down-regulated. Further analysis revealed that some important factors such as Oct4 and Sox2 appeared to be involved in the regulation of these miRNAs. These results may contribute to a better understanding of miRNA-regulated neural differentiation in early mouse embryos.  相似文献   

15.
To induce neural differentiation of P19 cells, two different treatments, RA (retinoic acid) and cell aggregation, are required. However, there has been no report that RA treatment alone or cell aggregation alone could control alternative splicing regulation in P19 cells. Therefore, we focused on alternative splicing effects by neural induction (RA treatment and/or cell aggregation) in P19 cells. We analysed the splicing patterns of several genes, including 5‐HT3R‐A (5‐hydroxytryptamine receptor), Actn1 (actinin alpha1), CUGBP2 (CUG‐binding protein) and PTB (polypyrimidine track‐binding protein), which showed different responses during the early neural induction of P19 cells. We show here that RA treatment alone changes the alternative splice mechanism of 5‐HT3R‐A. Cell aggregation alone controls alternative splicing regulation of Actn1. Both treatments (RA and cell aggregation) compensate and regulate the alternative splicing mechanism of CUGBP2. However, PTB is independent of RA and cell aggregation. Taken together, our results suggest that RA treatment and cell aggregation independently regulate the alternative splicing mechanism in the early stage of P19 cells during neural differentiation.  相似文献   

16.
Fibroblast growth factors (FGFs) have been implicated in a number of proliferative lesions, including malignant tumor growth and vascularization. As a result, cytotoxic agents that target cell surface FGF receptors are currently under investigation. Previous reports have shown that conjugation of basic FGF with the ribosome inactivator, saporin, results in a potent cytotoxin specific for cells bearing high-affinity FGF receptors. In this report, we have used this FGF receptor-dependent cytotoxin to study receptor interactions at the surface of embryonal carcinoma cells, which express low numbers of high-affinity FGF receptors. The growth of three embryonal carcinoma cell lines and one embryonic stem cell line was shown to be inhibited by bFGF-saporin, suggesting that these cells are able to bind and internalize FGF through high-affinity FGF receptors. In addition, we determined that the responses of these cells to bFGF-saporin are qualitatively different than the responses of CHO-KI cells, which also exhibit low numbers of high-affinity FGF receptors. Specifically, pretreatment with bFGF-saporin reduces the cloning efficiency of CHO-KI cells 8- to 10-fold, whereas bFGF-saporin has little or no effect on the cloning efficiency of embryonal carcinoma cells. This finding suggests that bFGF-saporin is cytotoxic for CHO-KI cells, but not for embryonal carcinoma cells. Thus, our findings argue strongly that other factors, in addition to high-affinity FGF receptor number, are important in determining sensitivity of cells of bFGF-saporin.  相似文献   

17.
ADAM23 (a disintegrin and metalloprotease 23), a member of brain MDC (macrophage‐derived chemokine) family, is important for the development of CNS (central nervous system). P19 mouse embryonal carcinoma cells can differentiate into neurons when cultured in aggregates and induced with RA (retinoic acid). We have found that under conditions without RA induction, knocking down ADAM23 with RNAi (RNA interference) promoted neuronal differentiation, and similarly recombinant GST (glutathione transferase)‐ADAM23‐DIS protein inhibited neuronal differentiation of P19/ADAM23KD (P19/ADAM23‐knockdown) cells. In P19/ADAM23KD, there were more cells arrested in G1 phase than normal P19 cells, due to the up‐regulation of P57KIP2 and P27KIP1 expression. P27KIP1 was up‐regulated during the differentiation process of both P19/ADAM23KD cells without RA induction, and P19 cells with RA induction. Transient overexpression of P27KIP1 in P19 cells also promoted neuronal differentiation of P19 cells. The findings indicate that ADAM23 suppresses neuronal differentiation through its disintegrin domain, and Adam23 KD up‐regulates P27KIP1 in P19/ADAM23KD cells, one reason that P19/ADAM23KD cells can differentiate into neurons without RA induction.  相似文献   

18.
HSPs (heat shock proteins) have been recognized to maintain cellular homoeostasis during changes in microenvironment. The present study aimed to investigate the HSPs expression pattern in hierarchical neural differentiation stages from mouse embryonal carcinoma stem cells (P19) and its role in heat stressed exposed cells. For induction of HSPs, cells were heated at 42°C for 30 min and recovered at 37°C in different time points. For neural differentiation, EBs (embryoid bodies) were formed by plating P19 cells in bacterial dishes in the presence of 1 mM RA (retinoic acid) and 5% FBS (fetal bovine serum). Then, on the sixth day, EBs were trypsinized and plated in differentiation medium containing neurobasal medium, B27, N2 and 5% FBS and for an extra 4 days. The expression of HSPs and neural cell markers were evaluated by Western blot, flow cytometry and immunocytochemistry in different stages. Our results indicate that HSC (heat shock constant)70 and HSP60 expressions decreased following RA treatment, EB formation and in mature neural cells derived from heat-stressed single cells and not heat-treated EBs. While the level of HSP90 increased six times following maturation process, HSP25 was expressed constantly during neural differentiation; however, its level was enhanced with heat stress. Accordingly, heat shock 12 h before the initiation of differentiation did not affect the expression of neuroectodermal and neural markers, nestin and β-tubulin III, respectively. However, both markers increased when heat shock was induced after treatment and when EBs were formed. In conclusion, our results raise the possibility that HSPs could regulate cell differentiation and proliferation under both physiological and pathological conditions.  相似文献   

19.
Summary The embryonal carcinoma cell line P19 is derived from mouse teratocarcinomas. These pluripotent cells can be induced to differentiate into a variety of cell types by exposure to various drugs. We used retinoic acid to induce embryonal carcinoma cells to differentiate into neuronlike cells. In this study, we show that changes occur in mitochondria during differentiation of embryonal carcinoma cells to neuronlike cells. We found that various morphologic parameters such as mitochondrial fractional area and mitochondrial size decrease as embryonal carcinoma cells differentiate into neuronlike cells. Similar changes were also observed in mitochondrial DNA content. Stereologic analysis of cell preparations provided a measure of mitochondrial fractional area per cell and mtDNA content was assessed by radiolabeled mtDNA probe. This study establishes that mitochondria are regulated as cells differentiate. This study was financially supported by the Medical Research Council of Canada.  相似文献   

20.
In this paper we have examined the growth and differentiation of the embryonal carcinoma cell line, F9, in the defined medium EM-3 at low density. We show that the growth of F9 and their differentiated cells (F9-diff) in EM-3 is strongly density dependent. At low cell densities the growth of both cell types is severely limited and most of the cells do not survive. Although this poses a problem for working with F9 and F9-diff in EM-3, it provides a convenient assay for identifying molecules that support their growth at low density. Using this assay, we have determined that laminin, a newly isolated glycoprotein of basement membranes, significantly improves the growth and short-term survival of both F9 and F9-diff. However, addition of laminin to EM-3 is insufficient to promote the clonal growth of these cell types. Our findings also indicate that laminin promotes the attachment of F9 and F9-diff in defined media. On the basis of our results, we propose an attachment function for laminin during the early stages of mammalian development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号