首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four forms of acid phosphatase have been found in the testicular tissue of many mammalian species, but their exact cellular site has remained obscure. In this work, acid phosphatases have been studied in different reproductive organs of the male rat, in somatic cell lines derived by cloning from both rat and mouse testes, in primary cultures of rat Sertoli cells, and in isolated spermatogenic cells of the mouse. Among the reproductive organs, preputial glands show the highest specific activities with p-nitrophenyl phosphate as substrate, followed by the testicular tissue and the different regions of the epididymis. By contrast to that in other tissues, testicular activity with p-nitrophenyl phosphate is not influenced by tartrate and is activated markedly by cobalt (Co2+). Among the somatic cell lines, the highest hydrolysis rates are obtained with naphthyl substrates in the epithelial (TR-1) and myoid (TR-M) cell lines and marginally lower rates in the Leydig (TM3) and Sertoli (TM4) cell lines. With thymolphthalein phosphate, the latter two cell lines show very low activity. These activities are not influenced by different hormones and growth factors in the culture medium. The most marked Co2+-activated reaction with p-nitrophenyl phosphate is found in advanced stages of germinal cells and residual bodies. Primary cultures of Sertoli cells, prepared from rats 10 to 30 days of age, show a slight decrease in acid phosphatase levels; however, the activities are not influenced markedly by addition of follicle-stimulating hormone (FSH) and/or testosterone to the culture medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The incorporation of 3H-proline into protein was regarded as a measure of total protein synthesis and the incorporation into hydroxyproline as indicative of collagen synthesis. Relative collagen synthesis (expressed as percent of total protein synthesized) by Sertoli and peritubular myoid cells cultured from 20-22 day old rat testis was estimated. In both secreted and cellular pools, relative collagen synthesis by Sertoli cells was significantly greater than by peritubular myoid cells. Coculture of Sertoli and myoid cells resulted in a significant increase in relative collagen synthesis when compared to monocultures of each cell type. Addition of serum to peritubular myoid cells resulted in a stronger stimulation of relative collagen production. Sertoli cell extracellular matrix inhibited relative collagen synthesis by peritubular myoid cells in the presence or absence of serum. Radioactivity into hydroxyproline as corrected per cellular DNA also showed similar results. Immunolocalization studies confirmed that both cell types synthesize type I and type IV collagens. These results indicate that stimulation of collagen synthesis observed in Sertoli-myoid cell cocultures is due to humoral interactions, rather than extracellular matrix, and Sertoli cell extracellular matrix regulates serum-induced increase in collagen synthesis by peritubular myoid cells.  相似文献   

3.
We report the patterns of migration of Sertoli cells plated on specific substrata, and the influences of testicular peritubular cells on these processes. Data presented indicate that while peritubular cells readily spread when explanted onto Type I collagen, Sertoli cells do not. A delay of 4 to 6 days occurs after Sertoli cells are plated before they begin to migrate randomly to form plaque-like monolayers on Type I collagen. These processes are dependent upon the synthesis and subsequent deposition of laminin and/or Type IV collagen by Sertoli cells, and are independent of fibronectin. A different behavior occurs when reconstituted mixtures of purified Sertoli cells and pertiubular cells are sparsely plated onto Type I collagen. Peritubular cells rapidly spread to form chains of cells between Sertoli cell aggregates. Sertoli cells then migrate on the surfaces of the peritubular cells, culminating in the formation of cable-like structures between aggregates. Evidence is presented that the Sertoli cell migration to form "cables" under these conditions is dependent upon fibronectin synthesized by peritubular cells, and is independent of the presence of laminin or Type IV collagen. We discuss the possible relevance of these data to the role which precursors of peritubular cells may play in determining the behavior of Sertoli cell precursors in vivo during tubulogenesis, or in the remodelling of the seminiferous tubule which occurs during different stages of the cycle of the seminiferous epithelium in spermatogenesis.  相似文献   

4.
The cell types in Sertoli cell-enriched cultures can be identified by using the DNA-specific fluorochrome Hoechst 33342 staining. This simple, rapid and reproducible procedure can be used with fixed and living cells. The peritubular myoid cells can be distinguished from the Sertoli cells in Sertoli cell-enriched cultures by the characteristic staining pattern obtained using Hoechst 33342 dye. Those cells identified as peritubular myoid cells by the characteristic DNA staining also interacted with the anti-fibronectin antibody determined by an immunocytochemical method while the Sertoli cells did not. The described staining method is valuable in assessing the presence of peritubular myoid cells in Sertoli cell-enriched cultures.  相似文献   

5.
Addition of dibutyryl cyclic AMP (dbcAMP), methylisobutylxanthine (MIX), or cytochalasin D to co-cultures of Sertoli cells and testicular peritubular myoid cells blocks a series of morphogenetic changes which otherwise occur during culture. When Sertoli cells are plated directly onto preexisting layers of peritubular cells maintained under basal conditions, structures form which display many of the characteristics of germ cell-depleted seminiferous tubules. The presence of dbcAMP, MIX, or cytochalasin D, added at varying times after plating Sertoli cells, results in the inhibition of each successive stage of in vitro remodeling: the inhibition of migration of Sertoli cells, the inhibition of initial ridge formation, the blockage of subsequent formation of mounds and nodules of compacted Sertoli cell aggregates, the prevention of the formation of basal lamina and associated layers of extracellular matrix between Sertoli cell aggregates and surrounding peritubular cells, and the inhibition of tubule formation. The presence of dbcAMP also inhibits the migration of peritubular cells, contractions by these cells, and compaction of Sertoli cell aggregates. When intimate cell apposition is prevented by plating the two cell types on either side of a membrane filter, the morphogenetic cascade is blocked, and no formation of a germ cell-depleted seminiferous tubule-like structure occurs. Other effects of dbcAMP on cell shape, cell movement, and cell association patterns during co-culture are described. Possible mechanisms by which dbcAMP, MIX, or cytochalasin D blocks restructuring are discussed. Since each elicits perturbations of the cytoskeleton, we offer the interpretation that cytoskeletal changes may be correlated with the prevention of closely apposing cell compact and the inhibition of basement membrane formation. Interactions observed between Sertoli cells and peritubular cells during co-culture are postulated to be analogous to those occurring in other types of mesenchymal cell-epithelial cell interactions during organogenesis and during tubulogenesis in the fetal testis. Speculatively, the blockage by dbcAMP of the morphogenetic cascade in the co-cultured system may be related to the inhibition by dbcAMP of testis cord formation in organ cultures of fetal gonads reported by others.  相似文献   

6.
Summary The cell types in Sertoli cell-enriched cultures can be identified by using the DNA-specific fluorochrome Hoechst 33342 staining. This simple, rapid and reproducible procedure can be used with fixed and living cells. The peritubular myoid cells can be distinguished from the Sertoli cells in Sertoli cell-enriched cultures by the characteristic staining pattern obtained using Hoechst 33342 dye. Those cells identified as peritubular myoid cells by the characteristic DNA staining also interacted with the anti-fibronectin antibody determined by an immunocytochemical method while the Sertoli cells did not. The described staining method is valuable in assessing the presence of peritubular myoid cells in Sertoli cell-enriched cultures.  相似文献   

7.
Peritubular cells, prepared from seminiferous tubules from testes of 20-day-old-rats, were seeded onto different substrata and cultured under varying conditions. When plated onto polystyrene or glass surfaces, peritubular cells assumed a typical fibroblast-like cell shape and cell association pattern, together with a fibroblast-like migration behavior. They maintained high rates of proliferation even after achieving confluency. In contrast, when peritubular cells were plated onto a seminiferous tubule biomatrix (ST-biomatrix) surface, they spread to form a continuous cell layer having a myoepithelioid histotype similar to that of peritubular myoid cells in the intact seminiferous tubule. The characteristics of the myoepithelioid histotype described include a squamous, polyhedral cell shape; a cobblestone-like cell association pattern, with closely apposing or slightly overlapping cell borders, and a very low mitotic index. When peritubular cells were plated onto laminin, collagen, fibronectin, heparin, or a liver biomatrix, a fibroblast-like pattern resulted, indicating that ECM components listed and liver biomatrix are unable to substitute for ST-biomatrix in maintaining normal myoepithelioid characteristics in vitro. In cocultures of Sertoli cells plated on top of peritubular cells, the peritubular cells directly in contact with Sertoli cell aggregates developed a myoepithelioid histotype, whereas peritubular cells in regions not in direct contact had a fibroblast-like histotype. The data are discussed in relation to the possible role of cell-cell interactions, and cell-substratum interactions, in the acquisition and stabilization of the histotype of peritubular cells in the seminiferous tubule during development.  相似文献   

8.
We have previously reported metabolic cooperation between Sertoli and peritubular myoid cells in terms of synthesis of one of the main testicular extracellular matrix (ECM) constituents, glycosaminoglycans (GAG). This study concerns Sertoli cell ECM-peritubular myoid cell interactions in terms of GAG synthesis. We have examined the responses of hormones and other regulatory agents such as a combination of follicle-stimulating hormone (FSH), insulin, retinol, and testosterone (FIRT) on peritubular myoid cells, and tested if Sertoli cell ECM or serum factor substitute for the stimulation by FIRT. Testicular peritubular myoid cells cultured on Sertoli cell ECM showed significant increases in the levels of cell- and ECM-associated GAG over that when cultured on uncoated plastic. This indicates a specific cell-substratum interaction between Sertoli cell ECM and peritubular myoid cells in the testis in terms of GAG synthesis. Moreover, in terms of cell-associated GAG synthesis, peritubular myoid cells cultured on Sertoli cell ECM or on plastic in the presence of serum substituted for the stimulatory response of FIRT on peritubular myoid cells cultured on uncoated plastic. The data are discussed in relation to the possible role of cell-substratum interaction in maintaining peritubular myoid cell functions. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Sertoli cell preparations isolated from 10-day-old rats were cultured on three different substrates: plastic, a matrix deposited by co-culture of Sertoli and peritubular myoid cells, and a reconstituted basement membrane gel from the EHS tumor. When grown on plastic, Sertoli cells formed a squamous monolayer that did not retain contaminating germ cells. Grown on the matrix deposited by Sertoli-myoid cell co-cultures, Sertoli cells were more cuboidal and supported some germ cells but did not allow them to differentiate. After 3 wk however, the Sertoli cells flattened to resemble those grown on plastic. In contrast, the Sertoli cells grown on top of the reconstituted basement membrane formed polarized monolayers virtually identical to Sertoli cells in vivo. They were columnar with an elaborate cytoskeleton. In addition, they had characteristic basally located tight junctions and maintained germ cells for at least 5 wk in the basal aspect of the monolayer. However, germ cells did not differentiate. Total protein, androgen binding protein, transferrin, and type I collagen secretion were markedly greater when Sertoli cells were grown on the extracellular matrices than when they were grown on plastic. When Sertoli cells were cultured within rather than on top of reconstituted basement membrane gels they reorganized into cords. After one week, tight junctional complexes formed between adjacent Sertoli cells, functionally compartmentalizing the cords into central (adluminal) and peripheral (basal) compartments. Germ cells within the cords continued to differentiate. Thus, Sertoli cells cultured on top of extracellular matrix components assume a phenotype and morphology more characteristic of the in vivo, differentiated cells. Growing Sertoli cells within reconstituted basement membrane gels induces a morphogenesis of the cells into cords, which closely resemble the organ from which the cells were dissociated and which provide an environment permissive for germ cell differentiation.  相似文献   

10.
Localization and synthesis of entactin in seminiferous tubules of mouse testis was studied by immunocytochemistry. Frozen sections from adult mice testes were subjected to anti-entactin and anti-laminin immunofluorescence. Both entactin and laminin were localized within the seminiferous tubule basement membrane and intertubular region of the testis. The addition of excess amount of entactin (but not fibronectin), premixed with anti-entactin antiserum, abolished the immunostain. Western blotting showed that a protein extract from a seminiferous tubule basement membrane preparation was recognized by anti-entactin anti-serum and comigrated with recombinant entactin. Enriched fractions of isolated primary Sertoli cells and peritubular myoid cells cultured for 6 days on a glass coverslip were able to synthesize and secrete entactin as detected by immunofluorescence microscopy. Entactin was also produced by TM3 (Leydig-like) and TM4 (Sertoli-like) cell lines as detected by both immunofluorescence and Western blotting. The distribution of entactin vs. laminin within both the cultured primary cells and the TM3 and TM4 cell lines differed. Entactin appeared mainly localized extracellularly. In contrast, laminin was mainly localized intracellularly. The above findings suggested that 1) entactin existed in the seminiferous tubule basement membrane and intertubular region of adult mice testis, co-localized with laminin; 2) entactin was synthesized by the cultured primary Sertoli cells and peritubular myoid cells and the TM3 and TM4 cell lines; 3) entactin was exocytosed with little intracellular accumulation, in contrast to an intracellular accumulation of laminin.  相似文献   

11.
Immature rat Sertoli cells aggregate and form tubule-like structures when cultured on a monolayer of peritubular myoid cells. In this study, differential gene expression of monocultures and direct cocultures of peritubular cells and Sertoli cells were examined. One of the cDNA clones isolated showed high homology to calcyclin and a microvascular differentiation gene, CEC5, which was reported to be highly homologous to CASK, a membrane-associated guanylate kinase homolog. Sequencing and mRNA analysis of rat calcyclin demonstrated that the gene was differentially expressed and was found only in peritubular cells and cocultures with increased levels. In contrast, CASK was expressed by Sertoli cells, peritubular cells, and cocultures, whereas CEC5 was never found in the testicular somatic cells. Our findings point to a paracrine regulation of calcyclin expression in testicular peritubular fibroblasts which seems to be related to tubular growth.  相似文献   

12.
Observations summarized in this article demonstrate an essential role of laminin during the restructuring processes that occur during coculture of Sertoli cells with testicular peritubular cells. The data presented indicate that laminin becomes detectable on the free surfaces of Sertoli cells only after reaggregation of Sertoli cells begins, coincident with the initiation of repolarization at a specific stage of the morphogenetic cascade. We infer that laminin deposited at this time serves as a cohesion molecule that permits peritubular cells to come into close contact with Sertoli cells and subsequently to spread along the free surfaces of Sertoli cells. These conclusions and inferences are based on the following experiments. Cycloheximide-treated peritubular cells in culture in MEM containing cycloheximide readily attach to laminin-coated polystyrene surfaces. By contrast, added peritubular cells do not attach onto monolayers of Sertoli cells in monoculture or onto Sertoli cells plated on top of peritubular cells and maintained in coculture for periods of up to 48 h in cocultures maintained for 6 days, however, labeled peritbular cells readily adhere to the free surfaces of reaggregated Sertoli cells. Laminin, but not fibronectin, appears on the free surfaces of the reaggregated Sertoli cells atthis time, coinciding with the period of initial mound formation. The addition of antilaminin IgG, but not antifibronectin IgG, blocks the attachment of cycloheximide-treated peritubular cells to laminin-coated plates and also blocks the subsequent migration of peritubular cells required to form a monolayer. Similarly, anti-laminin IgG inhibits the attachment and spreading of labeled peritubular cells seeded on the free surfaces of reaggregated Sertoli cells in mounds generated during the morphogenetic cascade. We interpret the combined data to indicate that the appearance of laminin on the free surfaces of Sertoli cells is required to permit peritubular cells to adhere and subsequently to migrate on Sertoli cell surfaces, resulting in the formation of a tubule-like structure. © 1994 Wiley-Liss, Inc.  相似文献   

13.
14.
With indirect immunofluorescent microscopic techniques, we have shown that fibronectin is distributed primarily in or along the basal lamina of the seminiferous tubule boundary tissue in sections of testes from 20-day-old rats. Purified rat Sertoli cell-enriched aggregates, maintained in culture in the presence or absence of serum, exhibit no detectable immunofluorescence with fibronectin antibody, whereas purified peritubular cells in culture do have a positive reaction to fibronectin antibody. Peritubular cells in culture incorporate [35S] methionine into fibronectin which can be immunoprecipitated with a fibronectin antiserum, but Sertoli cells do not. We have used various criteria to estimate the degree of purity of Sertoli cell-enriched preparations. The presence of peritubular myoid cells in conventional Sertoli cell-enriched aggregates, cultured in the presence or absence of serum, can be detected with transmission electron microscopic examination, by the Feulgen staining procedure, and by the immunocytochemical identification of fibronectin. We describe a technique to purify Sertoli cells in conventional Sertoli cell-enriched preparations by treatment with hyaluronidase, resulting in a lesser number of peritubular cells by the above criteria, even in preparations cultured in the presence of serum. Data presented suggest that some of the products previously attributed exclusively to Sertoli cells in Sertoli cell-enriched preparations, particularly those cultured in the presence of serum, may have been contributed by peritubular cells.  相似文献   

15.
Testicular peritubular myoid cells secrete a paracrine factor that is a potent modulator of Sertoli cell functions involved in the maintenance of spermatogenesis. These cells also play an integral role in maintaining the structural integrity of the seminiferous tubule. To better understand this important testicular cell type, studies were initiated to characterize cultured peritubular cells using biochemical and histochemical techniques. The electrophoretic pattern of radiolabeled secreted proteins was similar for primary and subcultured peritubular cells and was unique from that of Sertoli cells. Morphologic differences between Sertoli cells and peritubular cells were noted and extended with histochemical staining techniques. Desmin cytoskeletal filaments were demonstrated immunocytochemically in peritubular cells, both in culture and in tissue sections, but were not detected in Sertoli cells. Desmin is proposed to be a marker for peritubular cell differentiation as well as a marker for peritubular cell contamination in Sertoli cell cultures. Peritubular cells and Sertoli cells were also stained histochemically for the presence of alkaline phosphatase. Staining for the alkaline phosphatase enzyme was associated with peritubular cells but not with Sertoli cells. Alkaline phosphatase is therefore an additional histochemical marker for peritubular cells. Biochemical characterization of peritubular cells relied on cell-specific enzymatic activities. Creatine phosphokinase activity, a marker for contractile cells, was found to be associated with peritubular cells, while negligible activity was associated with Sertoli cells. Alkaline phosphatase activity assayed spectrophotometrically was found to be a useful biochemical marker for peritubular cell function and was utilized to determine the responsiveness of primary and subcultured cells to regulatory agents. Testosterone stimulated alkaline phosphatase activity associated with primary cultures of peritubular cells, thus supporting the observation that peritubular cells provide a site of androgen action in the testis. Retinol increased alkaline phosphatase activity in subcultured peritubular cells. Alkaline phosphatase activity increased in response to dibutyryl cyclic adenosine monophosphate (AMP) in both primary and subcultured peritubular cell cultures. Observations indicate that the ability of androgens and retinoids to regulate testicular function may be mediated, in part, through their effects on peritubular cells. This provides additional support for the proposal that the mesenchymal-epithelial cell interactions between peritubular cells and Sertoli cells are important for the maintenance and control of testicular function. Results imply that the endocrine regulation of tissue function may be mediated in part through alterations in mesenchymal-epithelial cell interactions.  相似文献   

16.
Sertoli cells from immature rats (18 days old) were cultured on Millipore filters impregnated with reconstituted basement membrane in bicameral chambers. Three types of cultures were obtained: 1) confluent monolayer cultures that formed a permeability barrier (impermeable), 2) confluent monolayer cultures that did not form a permeability barrier (permeable), and 3) subconfluent cultures (permeable). The relationships among fluid equilibrium, electrical resistance, and [3H]inulin transport between the apical and basal reservoirs of the chambers were examined. An impermeable confluent monolayer is defined when the cells of the Sertoli cell epithelial sheet are able to prevent hydrodynamic equilibration of fluid levels between the apical and basal reservoirs of a bicameral chamber. That is, a permeability barrier is present between the two sides of the chamber when fluid levels (volumes) do not change. In the impermeable confluent Sertoli cell monolayers, 7.5 +/- 0.6% of added [3H]inulin diffused across the monolayer during a 6-h collection period versus 13.7 +/- 0.5% in permeable cultures. Conversely, the electrical resistance was higher in the impermeable monolayers (41-71 ohm.cm2) than in the permeable layers (less than 33 ohm.cm2). A reciprocal linear relationship (Y = -4.68(X) + 91.50, r = 0.808) exists between inulin flux and electrical resistance, and this relationship is a function of cell density. Transferrin (Tf) was one of a few proteins detected in the basal medium of bicameral chambers, whereas most de novo synthesized proteins were secreted into the apical reservoir of the chamber. No significant differences in the total amount of Tf secreted by impermeable or permeable monolayers of Sertoli cells were observed. However, the Sertoli cell secretion ratios (apical/basal) of Tf during a 15-20-h collection period were 2.03 and 1.57 for impermeable monolayers plated at 2.4 x 10(6) and 3.6 x 10(6) cells/well, respectively, but less than 1.0 in permeable layers of cells. When fewer than 2 x 10(6) Sertoli cells were plated, the apical/basal polarity of Tf secretion declined to below 1 in a 24-h culture period, even though those chambers contained impermeable monolayers (recognized by the lack of hydrodynamic equilibrium). These results indicate that polarized secretion by Sertoli cells is dependent on (1) plating density and (2) formation of an impermeable epithelial sheet.  相似文献   

17.
The potential role of transforming growth factor beta (TGF beta) as a mediator of cell-cell interactions within the seminiferous tubule was investigated through an examination of the local production and action of TGF beta. Sertoli cells and peritubular (myoid) cells were isolated and cultured under serum-free conditions. Secreted proteins from Sertoli cells and peritubular cells were found to contain a component that bound to TGF beta receptors in RRA. Reverse-phase chromatography of Sertoli cell and peritubular cell secreted proteins fractionated a protein with similar biochemical properties as TGF beta 1. This fractionated protein also contained TGF beta bioactivity in its ability to inhibit growth of an epidermal growth factor-dependent cell line. Both peritubular cells and Sertoli cells contained a 2.4 kilobase mRNA species that hybridized in a Northern blot analysis with a TGF beta 1 cDNA probe. TGF beta 1 gene expression was not detected in freshly isolated germ cells. TGF beta 1 alone was not found to influence Sertoli cell nor peritubular cell proliferation with cells isolated from a midpubertal stage of development. The effects of hormones and TGF beta on Sertoli cell differentiation and function were assessed through an examination of transferrin production by Sertoli cells. TGF beta 1 had no effect on transferrin production nor the ability of hormones to influence transferrin production. The presence of peritubular cells in a coculture with Sertoli cells also did not affect the inability of TGF beta 1 to act on Sertoli cells. Although Sertoli cell function did not appear to be influenced by TGF beta 1, peritubular cells responded to TGF beta 1 through an increase in the production of a number of radiolabeled secreted proteins. TGF beta 1 also had relatively rapid effects on peritubular cell migration and the promotion of colony formation in culture. Cocultures of Sertoli cells and peritubular cells responded to TGF beta 1 by the formation of large cell clusters with ball-like structures. Data indicate that TGF beta may have an important role in influencing the differentiation and migration of peritubular cells. Observations demonstrate the local production of TGF beta within the seminiferous tubule by Sertoli cells and peritubular cells and suggest that TGF beta may have a role as a paracrine-autocrine factor involved in the maintenance of testicular function.  相似文献   

18.
We describe procedures for the preparation of a cell-free seminiferous tubule biomatrix, and provide evidence demonstrating that this material constitutes a useful substratum for maintaining the normal architecture of Sertoli cells in primary culture. Seminiferous tubule biomatrix, which has the morphological appearance of a fibrillar network rich in filaments and amorphous substance, is shown to consist of about 50% protein, most of which is collagen and glycoproteins. Fibronectin and laminin are also present in the seminiferous tubule biomatrix, as judged by immunofluorescence microscopy. Sertoli cell aggregates plated on this substratum retain a cuboidal to columnar shape, spread very slowly to form a monolayer, and survive for at least 3 weeks when cultured in a hormone-free, serum-free, chemically defined medium. In contrast, Sertoli cells plated onto uncoated polystyrene readily spread to form a monolayer of flat squamous cells which do not survive as well. Other morphological and ultrastructural characteristics are described which indicate that cells cultured on the seminiferous tubule biomatrix more closely resemble those of Sertoli cells in vivo than do cells plated on uncoated plastic. These differences in cell structure, including the maintenance of normal polarity as indicated by the presence of basolateral tight junctional complexes, remain evident for periods of 10 to 14 days after plating Sertoli cells onto biomatrix substratum. Rates of DNA synthesis by immature Sertoli cells plated onto biomatrix are less than rates by cells plated onto uncoated plastic. The data are discussed in relation to the role of substratum in the preservation of normal functions and histotype of Sertoli cells.  相似文献   

19.
The potent smooth muscle agonist endothelin-1 (ET-1) is involved in the local control of seminiferous tubule contractility, which results in the forward propulsion of tubular fluid and spermatozoa, through its action on peritubular myoid cells. ET-1, known to be produced in the seminiferous epithelium by Sertoli cells, is derived from the inactive intermediate big endothelin-1 (big ET-1) through a specific cleavage operated by the endothelin-converting enzyme (ECE), a membrane-bound metalloprotease with ectoenzymatic activity. The data presented suggest that the timing of seminiferous tubule contractility is controlled locally by the cyclic interplay between different cell types. We have studied the expression of ECE by Sertoli cells and used myoid cell cultures and seminiferous tubule explants to monitor the biological activity of the enzymatic reaction product. Northern blot analysis showed that ECE-1 (and not ECE-2) is specifically expressed in Sertoli cells; competitive enzyme immunoassay of ET production showed that Sertoli cell monolayers are capable of cleaving big ET-1, an activity inhibited by the ECE inhibitor phosphoramidon. Microfluorimetric analysis of intracellular calcium mobilization in single cells showed that myoid cells do not respond to big endothelin, nor to Sertoli cell plain medium, but to the medium conditioned by Sertoli cells in the presence of big ET-1, resulting in cell contraction and desensitization to further ET-1 stimulation; in situ hybridization analysis shows regional differences in ECE expression, suggesting that pulsatile production of endothelin by Sertoli cells (at specific "stages" of the seminiferous epithelium) may regulate the cyclicity of tubular contraction; when viewed in a scanning electron microscope, segments of seminiferous tubules containing the specific stages characterized by high expression of ECE were observed to contract in response to big ET-1, whereas stages with low ECE expression remained virtually unaffected. These data indicate that endothelin-mediated spatiotemporal control of rhythmic tubular contractility might be operated by Sertoli cells through the cyclic expression of ECE-1, which is, in turn, dependent upon the timing of spermatogenesis.  相似文献   

20.
Epithelial-like Sertoli cells isolated from immature rat testis aggregate to form tubule-like structures when cultured on a monolayer of mesenchyme-derived peritubular cells. At the end of this morphogenetic process both cell types are separated by a basement membrane. In this study the gene expression of monocultures and direct cocultures of peritubular cells and Sertoli cells was examined using DD-RT-PCR. One of the isolated cDNA clones showed high homology to the cDNA encoding the basement membrane component entactin-1 (nidogen-1). Even though the entactin-1 (nidogen-1) gene is transcribed in peritubular cells, Sertoli cells, and in direct cocultures, the mRNA is translated only by the peritubular cells. No entactin-1 (nidogen-1) was detected in the Sertoli cells by Western blotting. Moreover, peritubular cell monocultures and cocultures showed the presence of one single band at 152 kDa in the supernatant, whereas in cell lysates two bands were detectable at 152 kDa and 150 kDa. Perturbation experiments using monoclonal antibodies directed against entactin-1 (nidogen-1) were performed with peritubular cells and Sertoli cells, respectively, and demonstrated loss of cell adhesion of the peritubular cells, while the Sertoli cells remained adherent. From these data we conclude that entactin-1 is exclusively produced and secreted by mesenchymal peritubular cells, and affects adhesion of peritubular cells in an autocrine manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号