首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene, SMN1 and SMN2. In spinal muscular atrophy (SMA), SMN2 is not able to compensate for the loss of SMN1 due to exclusion of exon 7. Here we describe a novel inhibitory element located immediately downstream of the 5' splice site in intron 7. We call this element intronic splicing silencer N1 (ISS-N1). Deletion of ISS-N1 promoted exon 7 inclusion in mRNAs derived from the SMN2 minigene. Underlining the dominant role of ISS-N1 in exon 7 skipping, abrogation of a number of positive cis elements was tolerated when ISS-N1 was deleted. Confirming the silencer function of ISS-N1, an antisense oligonucleotide against ISS-N1 restored exon 7 inclusion in mRNAs derived from the SMN2 minigene or from endogenous SMN2. Consistently, this oligonucleotide increased the levels of SMN protein in SMA patient-derived cells that carry only the SMN2 gene. Our findings underscore for the first time the profound impact of an evolutionarily nonconserved intronic element on SMN2 exon 7 splicing. Considering that oligonucleotides annealing to intronic sequences do not interfere with exon-junction complex formation or mRNA transport and translation, ISS-N1 provides a very specific and efficient therapeutic target for antisense oligonucleotide-mediated correction of SMN2 splicing in SMA.  相似文献   

5.
Spinal muscular atrophy is caused by the loss of functional survival motor neuron (SMN1) alleles. A translationally silent nucleotide transition in the duplicated copy of the gene (SMN2) leads to exon 7 skipping and expression of a nonfunctional gene product. It has been suggested that differential SMN2 splicing is caused by the disruption of an exonic splicing enhancer. Here we show that the single nucleotide difference reduces the intrinsic strength of the 3' splice site of exon 7 2-fold, whereas the strength of the 5' splice site of the exon 7 is not affected. Thus, a decrease in splice site strength is magnified in the context of competing exons. These data suggest that lower levels of exon 7 definition not only reduce intron 6 removal but, more importantly, increase the efficiency of the competing exon 7 skipping pathway. Antisense oligonucleotides were tested to modulate exon 7 inclusion, which contains the authentic translation stop codon. Oligonucleotides directed toward the 3' splice site of exon 8 were shown to alter SMN2 splicing in favor of exon 7 inclusion. These results suggest that antisense oligonucleotides could be used as a therapeutic strategy to counteract the progression of SMA.  相似文献   

6.
5q spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and the leading genetic cause of infantile death. Patients lack a functional survival of motor neurons (SMN1) gene, but carry one or more copies of the highly homologous SMN2 gene. A homozygous knockout of the single murine Smn gene is embryonic lethal. Here we report that in the absence of the SMN2 gene, a mutant SMN A2G transgene is unable to rescue the embryonic lethality. In its presence, the A2G transgene delays the onset of motor neuron loss, resulting in mice with mild SMA. We suggest that only in the presence of low levels of full-length SMN is the A2G transgene able to form partially functional higher order SMN complexes essential for its functions. Mild SMA mice exhibit motor neuron degeneration, muscle atrophy, and abnormal EMGs. Animals homozygous for the mutant transgene are less severely affected than heterozygotes. This demonstrates the importance of SMN levels in SMA even if the protein is expressed from a mutant allele. Our mild SMA mice will be useful in (a) determining the effect of missense mutations in vivo and in motor neurons and (b) testing potential therapies in SMA.  相似文献   

7.
8.
9.
We report two novel mutations in three cases of spinal muscular atrophy (SMA), including two distant cousins who followed an unexpectedly severe course. Diagnosis was confirmed by reduced SMN protein and full-length SMN mRNA levels. Sequencing of the non-deleted SMN1 gene revealed a single G insertion at the end of exon 1 in the two cousins and a novel G275S exon 6 missense mutation in the milder case.  相似文献   

10.
11.
12.
13.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. The almost identical SMN2 gene is unable to compensate for this deficiency because of the skipping of exon 7 during pre–messenger RNA (mRNA) processing. Although several splicing factors can modulate SMN2 splicing in vitro, the physiological regulators of this disease-causing event are unknown. We found that knockout of the splicing factor SAM68 partially rescued body weight and viability of SMAΔ7 mice. Ablation of SAM68 function promoted SMN2 splicing and expression in SMAΔ7 mice, correlating with amelioration of SMA-related defects in motor neurons and skeletal muscles. Mechanistically, SAM68 binds to SMN2 pre-mRNA, favoring recruitment of the splicing repressor hnRNP A1 and interfering with that of U2AF65 at the 3′ splice site of exon 7. These findings identify SAM68 as the first physiological regulator of SMN2 splicing in an SMA mouse model.  相似文献   

14.
We have examined the dynamics of cAMP-response element-binding protein (CREB) binding to chromatin in live cells using fluorescence recovery after photobleaching (FRAP). CREB was found to bind to target sites with a residence time of 100 s, and exposure to a cAMP agonist had no effect on these kinetics. In addition to the basic region/leucine zipper (bZIP) domain, a glutamine-rich trans-activation domain in CREB called Q2 also appeared to be critical for promoter occupancy. Indeed, mutations in Q2 that reduced residence time by FRAP assay disrupted target gene activation via CREB in cells exposed to a cAMP agonist. Notably, insertion of the glutamine-rich B trans-activation domain of SP1 into a mutant CREB polypeptide lacking Q2 stabilized CREB occupancy and rescued target gene activation. These results suggest a novel mechanism by which the family of glutamine-rich activators promotes cellular gene expression.  相似文献   

15.
16.
Humans have two nearly identical copies of the survival motor neuron (SMN) gene, SMN1 and SMN2. Homozygous loss of SMN1 causes spinal muscular atrophy (SMA). SMN2 is unable to prevent the disease due to skipping of exon 7. Using a systematic approach of in vivo selection, we have previously demonstrated that a weak 5′ splice site (ss) serves as the major cause of skipping of SMN2 exon 7. Here we show the inhibitory impact of RNA structure on the weak 5′ ss of exon 7. We call this structure terminal stem–loop 2 (TSL2). Confirming the inhibitory nature of TSL2, point mutations that destabilize TSL2 promote exon 7 inclusion in SMN2, whereas strengthening of TSL2 promotes exon 7 skipping even in SMN1. We also demonstrate that TSL2 negatively affects the recruitment of U1snRNP at the 5′ ss of exon 7. Using enzymatic structure probing, we confirm that the sequence at the junction of exon 7/intron 7 folds into TSL2 and show that mutations in TSL2 cause predicted structural changes in this region. Our findings reveal for the first time the critical role of RNA structure in regulation of alternative splicing of human SMN.  相似文献   

17.
The Survival of Motor Neurons (SMN) is the disease gene of spinal muscular atrophy. We have previously established a genetic system based on the chicken pre-B cell line DT40, in which expression of SMN protein is regulated by tetracycline, to study the function of SMN in vivo. Depletion of SMN protein is lethal to these cells. Here we tested the functionality of mutant SMN proteins by determining their capacity to rescue the cells after depletion of wild-type SMN. Surprisingly, all of the spinal muscular atrophy-associated missense mutations tested were able to support cell viability and proliferation. Deletion of the amino acids encoded by exon 7 of the SMN gene resulted in a partial loss of function. A mutant SMN protein lacking both the tyrosine/glycine repeat (in exon 6) and exon 7 failed to sustain viability, indicating that the C terminus of the protein is critical for SMN activity. Interestingly, the Tudor domain of SMN, encoded by exon 3, does not appear to be essential for SMN function since a mutant deleted of this domain restored cell viability. Unexpectedly, a chicken SMN mutant (DeltaN39) lacking the N-terminal 39 amino acids that encompass the Gemin2-binding domain also rescued the lethal phenotype. Moreover, the level of Gemin2 in DeltaN39-rescued cells was significantly reduced, indicating that Gemin2 is not required for DeltaN39 to perform the essential function of SMN in DT40 cells. These findings suggest that SMN may perform a novel function in DT40 cells.  相似文献   

18.
19.
Spinal muscular atrophy is a neurodegenerative disease caused by mutations of the SMN1 gene. The homologous SMN2 gene is unable to complement SMN1 because of a crucial mutation in an exonic splicing enhancer, leading to alternative splicing and exclusion of exon 7. Two recent papers show that the defect in splicing of exon 7 of SMN2 is specifically corrected by small synthetic effectors. These new and specific approaches have potential in the treatment of diseases caused by defective splicing.  相似文献   

20.
Autosomal recessive spinal muscular atrophy (SMA) is classified, by age of onset and maximal motor milestones achieved, into type I (severe form), type II (intermediate form) and type III (mild/moderate form). SMA is caused by mutations in the survival motor neuron telomeric gene (SMN1) and a centromeric functional copy of this gene (SMN2) exists, both genes being located at 5q13. Homozygous deletion of exons 7 and 8 of SMN1 has been detected in approx 85% of Spanish SMA patients regardless of their phenotype. Nineteen cases with the sole deletion of exon 7 but not exon 8 (2 cases of type I, 13 cases of type II, four cases of type III) were further analysed for the presence of SMN2-SMN1 hybrid genes. We detected four different hybrid structures. Most of the patients were carriers of a hybrid structure: centromeric intron 6- centromeric exon 7- telomeric exon 8 (CCT), with or without neuronal apoptosis-inhibitor protein (NAIP). In two patients, a different hybrid structure, viz. telomeric intron 6- centromeric exon 7- telomeric exon 8 (TCT), was detected with or without NAIP. A phenotype-genotype correlation comparing the different structures of the hybrid alleles was delineated. Type I cases in our series are attributable to intrachromosomal deletion with a smaller number of SMN2 copies. Most cases with hybrid genes are type II occurring by a combination of a classical deletion in one chromosome and a hybrid gene in the other. Type III cases are closely associated with homozygozity or compound heterozygozity for hybrid genes resulting from two conversion events and have more copies of hybrid genes and SMN2 than type I or II cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号