首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A major limitation to improving small-molecule pharmaceutical production in streptomycetes is the inability of high-copy-number plasmids to tolerate large biosynthetic gene cluster inserts. A recent finding has overcome this barrier. In 2003, Hu et al. discovered a stable, high-copy-number, 81-kb plasmid that significantly elevated production of the polyketide precursor to the antibiotic erythromycin in a heterologous Streptomyces host (J. Ind. Microbiol. Biotechnol. 30:516-522, 2003). Here, we have identified mechanisms by which this SCP2*-derived plasmid achieves increased levels of metabolite production and examined how the 45-bp deletion mutation in the plasmid replication origin increased plasmid copy number. A plasmid intramycelial transfer gene, spd, and a partition gene, parAB, enhance metabolite production by increasing the stable inheritance of large plasmids containing biosynthetic genes. Additionally, high product titers required both activator (actII-ORF4) and biosynthetic genes (eryA) at high copy numbers. DNA gel shift experiments revealed that the 45-bp deletion abolished replication protein (RepI) binding to a plasmid site which, in part, supports an iteron model for plasmid replication and copy number control. Using the new information, we constructed a large high-copy-number plasmid capable of overproducing the polyketide 6-deoxyerythronolide B. However, this plasmid was unstable over multiple culture generations, suggesting that other SCP2* genes may be required for long-term, stable plasmid inheritance.  相似文献   

2.
Development of natural products for therapeutic use is often hindered by limited availability of material from producing organisms. The speed at which current technologies enable the cloning, sequencing, and manipulation of secondary metabolite genes for production of novel compounds has made it impractical to optimize each new organism by conventional strain improvement procedures. We have exploited the overproduction properties of two industrial organisms—Saccharopolyspora erythraea and Streptomyces fradiae, previously improved for erythromycin and tylosin production, respectively—to enhance titers of polyketides produced by genetically modified polyketide synthases (PKSs). An efficient method for delivering large PKS expression vectors into S. erythraea was achieved by insertion of a chromosomal attachment site (attB) for φC31-based integrating vectors. For both strains, it was discovered that only the native PKS-associated promoter was capable of sustaining high polyketide titers in that strain. Expression of PKS genes cloned from wild-type organisms in the overproduction strains resulted in high polyketide titers whereas expression of the PKS gene from the S. erythraea overproducer in heterologous hosts resulted in only normal titers. This demonstrated that the overproduction characteristics are primarily due to mutations in non-PKS genes and should therefore operate on other PKSs. Expression of genetically engineered erythromycin PKS genes resulted in production of erythromycin analogs in greatly superior quantity than obtained from previously used hosts. Further development of these hosts could bypass tedious mutagenesis and screening approaches to strain improvement and expedite development of compounds from this valuable class of natural products.  相似文献   

3.
Development of host microorganisms for heterologous expression of polyketide synthases (PKS) that possess the intrinsic capacity to overproduce polyketides with a broad spectrum of precursors supports the current demand for new tools to create novel chemical structures by combinatorial engineering of modular and other classes of PKS. Streptomyces fradiae is an ideal host for development of generic polyketide-overproducing strains because it contains three of the most common precursors—malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA—used by modular PKS, and is a host that is amenable to genetic manipulation. We have expanded the utility of an overproducing S. fradiae strain for engineered biosynthesis of polyketides by engineering a biosynthetic pathway for methoxymalonyl-ACP, a fourth precursor used by many 16-membered macrolide PKS. This was achieved by introducing a set of five genes, fkbG–K from Streptomyces hygroscopicus, putatively encoding the methoxymalonyl-ACP biosynthetic pathway, into the S. fradiae chromosome. Heterologous expression of the midecamycin PKS genes in this strain resulted in 1 g/l production of a midecamycin analog. These results confirm the ability to engineer unusual precursor pathways to support high levels of polyketide production, and validate the use of S. fradiae for overproduction of 16-membered macrolides derived from heterologous PKS that require a broad range of precursors.  相似文献   

4.
5.
A number of polyketide synthase gene sequences fromAspergillus ochraceus were isolated by both SSH-PCR and degenerate PCR. The deduced amino acid sequences of the corresponding clonedpks DNA fragments were then aligned with the amino acid sequences of other polyketide synthase enzymes. One of thesepks genes is essential for ochratoxin A biosynthesis (OTA-PKS). The OTA-PKS was most similar to methylsalicylic acid synthase (MSAS) type PKS proteins based on the alignment of the ketosynthase domains while if the acyl transferase domains were aligned it appeared to be more similar to PKS enzymes fromCochliobolus heterostrophus. The three PKS proteins identified by degenerate PCR were all from different PKS types, one was a MSAS type enzyme, the second was similar to the PKS proteins involved in lovastatin biosynthesis while the third was not similar to any of the other phylogenetic groupings. Data is presented which suggests that the use of phylogenetic analysis to predict the function of PKS proteins/genes is likely to be significantly enhanced by analyzing more than one domain of the protein. Presented at the EU-USA Bilateral Workshop on Toxigenic Fungi & Mycotoxins, New Orleans, USA, July 5–7, 2005 Financial support: Irish Government under the National Development Plan 2000–2006  相似文献   

6.
Algicide production by the filamentous cyanobacteriumFischerellasp. CENA 19   总被引:4,自引:2,他引:2  
The biosynthesis of algicides produced by a novelFischerellastrain was investigated. Two allelochemicals were identified, the aminoacylpolyketide fischerellin A (FsA) and the alkaloid 12-epi-hapalindole F (HapF). Based on the structure of FsA, genes that could be involved in its biosynthesis, including those encoding nonribosomal peptide synthetases (NRPSs) and a polyketide synthase (PKS), were identified by the polymerase chain reaction (PCR). By showing that the expression of NRPSs and PKSs is concomitant with algicide production we suggest that the identified genes may be involved in algicide biosynthesis. Analysis of an algicide preparation of the Brazilian-Amazonian strainFischerellasp. CENA 19 revealed the production of FsA,m/z409 (MH+), HapF,m/z370 (MH+), and other potential isoforms of the latter compounds, which were identified by high-performance liquid chromatography (HPLC) and matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass-spectrometry. The production of HapF was confirmed after purification by HPLC, analysis by NMR, and high-resolution mass-spectrometry (HRMS). Two-NRPS and a PKS gene were identified after specific amplification using a degenerate PCR. The expression of these synthetases was confirmed by Western blot analysis employing enzyme family-specific antibodies. These analyses revealed the presence of three NRPSs and a single PKS inFischerellasp. CENA 19. The structure of FsA indicates both aminoacyl- and polyketide moeities, suggesting that its biosynthesis may require an integrated NRPS/PKS enzyme system, possibly involving the genes and the synthetases identified.  相似文献   

7.
A sensitive fluorescent assay was developed to measure the extent of phosphopantetheinylation of polyketide synthase (PKS) acyl carrier protein (ACP) domains in polyketide production strains. The in vitro assay measures PKS fluorescence after transfer of fluorescently labeled phosphopantetheine from coenzyme A to PKS ACP domains in crude protein extracts. The assay was used to determine the extent of phosphopantetheinylation of ACP domains of the erythromycin precursor polyketide synthase, 6-deoxyerythronolide B synthase (DEBS), expressed in a heterologous Escherichia coli polyketide production strain. The data showed that greater than 99.9% of DEBS is phosphopantetheinylated. The assay was also used to interrogate the extent of phosphopantetheinylation of the lovastatin nonaketide synthase (LNKS) heterologously expressed in Saccharomyces cerevisiae. The data showed that LNKS was efficiently phosphopantetheinylated in S. cerevisiae and that lack of production of the lovastatin precursor polyketide was not due to insufficient phosphopantetheinylation of the expressed synthase.  相似文献   

8.
The polyene antibiotics, including nystatin, pimaricin, amphotericin, and candicidin, comprise a family of very valuable antifungal polyketide compounds, and they are typically produced by soil actinomycetes. Previously, using a polyene cytochrome P450 hydroxylase-specific genome screening strategy, Pseudonocardia autotrophica KCTC9441 was determined to contain genes potentially encoding polyene biosynthesis. Here, sequence information of an approximately 125.7-kb contiguous DNA region in five overlapping cosmids isolated from the P. autotrophica KCTC9441 genomic library revealed a total of 23 open reading frames, which are presumably involved in the biosynthesis of a nystatin-like compound tentatively named NPP. The deduced roles for six multi-modular polyketide synthase (PKS) catalytic domains were found to be highly homologous to those of previously identified nystatin biosynthetic genes. Low NPP productivity suggests that the functionally clustered NPP biosynthetic pathway genes are tightly regulated in P. autotrophica. Disruption of a NPP PKS gene completely abolished both NPP biosynthesis and antifungal activity against Candida albicans, suggesting that polyene-specific genome screening may constitute an efficient method for isolation of potentially valuable previously identified polyene genes and compounds from various rare actinomycetes widespread in nature.  相似文献   

9.
10.
Summary Cloned DNA encoding polyketide synthase (PKS) genes from one Streptomyces species was previously shown to serve as a useful hybridisation probe for the isolation of other PKS gene clusters from the same or different species. In this work, the actI and actIII genes, encoding components of the actinorhodin PKS of Streptomyces coelicolor, were used to identify and clone a region of homologous DNA from the monensin-producing organism S. cinnamonensis. A 4799 by fragment containing the S. cinnamonensis act-homologous DNA was sequenced. Five open reading frames (ORFs 1–5) were identified on one strand of this DNA. The five ORFs show high sequence similarities to ORFs that were previously identified in the granaticin, actinorhodin, tetracenomycin and whiE PKS gene clusters. This allowed the assignment of the following putative functions to these five ORFS : a heterodimeric -ketoacyl synthase (ORF1 and ORF2), an acyl carrier protein (ORF3), a -ketoacyl reductase (ORF5), and a bifunctional cyclase/dehydrase (ORF4). The ORFs are encoded in the order ORFl-ORF2-ORF3-ORF5-ORF4, and ORFs-1 and -2 show evidence for translational coupling. This act-homologous region therefore appears to encode a PKS gene cluster. A gene disruption experiment using the vector pGM 160, and other evidence, suggests that this cluster is not essential for monensin biosynthesis but rather is involved in the biosynthesis of a cryptic aromatic polyketide in S. cinnamonensis. An efficient plasmid transformation system for S. cinnamonensis has been established, using the multicopy plasmids pWOR120 and pWOR125.  相似文献   

11.
12.
13.
Polyketides are important secondary metabolites, many of which exhibit potent pharmacological applications. Biosynthesis of polyketides is carried out by a single polyketide synthase (PKS) or multiple PKSs in successive elongations of enzyme-bound intermediates related to fatty acid biosynthesis. The polyketide gene PKS306 from Pseudallescheria boydii NTOU2362 containing domains of ketosynthase (KS), acyltransferase (AT), dehydratase (DH), acyl carrier protein (ACP) and methyltransferase (MT) was cloned in an attempt to produce novel chemical compounds, and this PKS harbouring green fluorescent protein (GFP) was expressed in Saccharomyces cerevisiae. Although fluorescence of GFP and fusion protein analysed by anti-GFP antibody were observed, no novel compound was detected. 6-methylsalicylic acid synthase (6MSAS) was then used as a template and engineered with PKS306 by combinatorial fusion. The chimeric PKS containing domains of KS, AT, DH and ketoreductase (KR) from 6MSAS with ACP and MT from PKS306 demonstrated biosynthesis of a novel compound. The compound was identified with a deduced chemical formula of C7H10O3, and the chemical structure was named as 2-hydroxy-2-(propan-2-yl) cyclobutane-1,3-dione. The novel compound synthesized by the chimeric PKS in this study demonstrates the feasibility of combinatorial fusion of PKS genes to produce novel polyketides.  相似文献   

14.
15.
Salinomycin, an FDA-approved polyketide drug, was recently identified as a promising anti-tumour and anti-viral lead compound. It is produced by Streptomyces albus, and the biosynthetic gene cluster (sal) spans over 100 kb. The genetic manipulation of large polyketide gene clusters is challenging, and approaches delivering reliable efficiency and accuracy are desired. Herein, a delicate strategy to enhance salinomycin production was devised and evaluated. We reconstructed a minimized sal gene cluster (mini-cluster) on pSET152 including key genes responsible for tailoring modification, antibiotic resistance, positive regulation and precursor supply. These genes were overexpressed under the control of constitutive promoter PkasO* or Pneo. The pks operon was not included in the mini-cluster, but it was upregulated by SalJ activation. After the plasmid pSET152::mini-cluster was introduced into the wild-type strain and a chassis host strain obtained by ribosome engineering, salinomycin production was increased to 2.3-fold and 5.1-fold compared with that of the wild-type strain respectively. Intriguingly, mini-cluster introduction resulted in much higher production than overexpression of the whole sal gene cluster. The findings demonstrated that reconstitution of sal mini-cluster combined with ribosome engineering is an efficient novel approach and may be extended to other large polyketide biosynthesis.  相似文献   

16.
A generic design of Type I polyketide synthase genes has been reported in which modules, and domains within modules, are flanked by sets of unique restriction sites that are repeated in every module [1]. Using the universal design, we synthesized the six-module DEBS gene cluster optimized for codon usage in E. coli, and cloned the three open reading frames into three compatible expression vectors. With one correctable exception, the amino acid substitutions required for restriction site placements were compatible with polyketide production. When expressed in E. coli the codon-optimized synthetic gene cluster produced significantly more protein than did the wild-type sequence. Indeed, for optimal polyketide production, PKS expression had to be down-regulated by promoter attenuation to achieve balance with expression of the accessory proteins needed to support polyketide biosynthesis.  相似文献   

17.
Zearalenone, a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain and has chronic estrogenic effects on mammals. Zearalenone is a polyketide derived from the sequential condensation of multiple acetate units by a polyketide synthase (PKS), but the genetics of its biosynthesis are not understood. We cloned two genes, designated ZEA1 and ZEA2, which encode polyketide synthases that participate in the biosynthesis of zearalenone by Gibberella zeae (anamorph Fusarium graminearum). Disruption of either gene resulted in the loss of zearalenone production under inducing conditions. ZEA1 and ZEA2 are transcribed divergently from a common promoter region. Quantitative PCR analysis of both PKS genes and six flanking genes supports the view that the two polyketide synthases make up the core biosynthetic unit for zearalenone biosynthesis. An appreciation of the genetics of zearalenone biosynthesis is needed to understand how zearalenone is synthesized under field conditions that result in the contamination of grain.  相似文献   

18.
Regions of extremely high sequence identity are recurrent in modular polyketide synthase (PKS) genes. Such sequences are potentially detrimental to the stability of PKS expression plasmids used in the combinatorial biosynthesis of polyketide metabolites. We present two different solutions for circumventing intra-plasmid recombination within the megalomicin PKS genes in Streptomyces coelicolor. In one example, a synthetic gene was used in which the codon usage was reengineered without affecting the primary amino acid sequence. The other approach utilized a heterologous subunit complementation strategy to replace one of the problematic regions. Both methods resulted in PKS complexes capable of 6-deoxyerythronolide B analogue biosynthesis in S. coelicolor CH999, permitting reproducible scale-up to at least 5-l stirred-tank fermentation and a comparison of diketide precursor incorporation efficiencies between the erythromycin and megalomicin PKSs. Electronic Publication  相似文献   

19.
In previous studies, the biological characteristics of the fungus Cladosporium phlei and its genetic manipulation by transformation were assessed to improve production of the fungal pigment, phleichrome, which is a fungal perylenequinone that plays an important role in the production of a photodynamic therapeutic agent. However, the low production of this metabolite by the wild-type strain has limited its application. Thus, we attempted to clone and characterize the genes that encode polyketide synthases (PKS), which are responsible for the synthesis of fungal pigments such as perylenequinones including phleichrome, elsinochrome and cercosporin. Thus, we performed genomic DNA PCR using 11 different combinations of degenerate primers targeting conserved domains including β-ketoacyl synthase and acyltransferase domains. Sequence comparison of the PCR amplicons revealed a high homology to known PKSs, and four different PKS genes showing a high similarity to three representative types of PKS genes were amplified. To obtain full-length PKS genes, an ordered gene library of a phleichrome-producing C. phlei strain (ATCC 36193) was constructed in a fosmid vector and 4800 clones were analyzed using a simple pyramidal arrangement system. This hierarchical clustering method combines the efficiency of PCR with enhanced specificity. Among the three representative types of PKSs, two reducing, one partially reducing, and one non-reducing PKS were identified. These genes were subsequently cloned, sequenced, and characterized. Biological characterization of these genes to determine their roles in phleichrome production is underway, with the ultimate aim of engineering this pathway to overproduce the desired substance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号