首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The Ca2+/Mg2+ ATPase of rat heart plasma membrane was activated by millimolar concentrations of Ca2+ or Mg2+; other divalent cations also activated the enzyme but to a lesser extent. Sodium azide at high concentrations inhibited the enzyme by about 20%; oligomycin at high concentrations also inhibited the enzyme slightly. Trifluoperazine at high concentrations was found inhibitory whereas trypsin treatment had no significant influence on the enzyme. The rate of ATP hydrolysis by the Ca2+/Mg2+ ATPase decayed exponentially; the first-order rate constants were 0.14-0.18 min-1 for Ca2+ ATPase activity and 0.15-0.30 min-1 for Mg2+ ATPase at 37 degrees C. The inactivation of the enzyme depended upon the presence of ATP or other high energy nucleotides but was not due to the accumulation of products of ATP hydrolysis. Furthermore, the inactivation of the enzyme was independent of temperature below 37 degrees C. Con A when added into the incubation medium before ATP blocked the ATP-dependent inactivation; this effect was prevented by alpha-methylmannoside. In the presence of low concentrations of detergent, the rate of ATP hydrolysis was reduced while the ATP-dependent inactivation was accelerated markedly. Both Con A and glutaraldehyde decreased the susceptibility of Ca2+/Mg2+ ATPase to the detergent. These results suggest that the Ca2+/Mg2+ ATPase is an intrinsic membrane protein which may be regulated by ATP.  相似文献   

2.
Intact synaptosomes isolated from mammalian brain tissues (rat, mouse, gerbil, and human) have an ATP hydrolyzing enzyme activity on their external surface. The synaptosomal ecto-ATPase(s) possesses characteristics consistent with those that have been described for ecto-ATPases of various other cell types. The enzyme has a high affinity for ATP (the apparent Km values are in the range of 2-5 X 10(-5) M), and is apparently stimulated equally well by either Mg2+ or Ca2+ in the absence of any other cations. The apparent activation constant for both divalent cations is approximately 4 X 10(-4) M in all mammalian brain tissues studied. The involvement of a non-specific phosphatase in the hydrolysis of externally added ATP is excluded. ATP hydrolysis is maximal in the pH range 7.4-7.8 for both divalent cation-dependent ATPase activities. Dicyclohexylcarbodiimide, 2,4-dinitrophenol, trifluoperazine, chlorpromazine, and p-chloromercuribenzoate (50 microM) inhibit the ecto-ATPase, whereas ouabain (1 mM) and oligomycin (3.5 micrograms X mg-1 protein) show little or no inhibition of this enzyme activity. Inhibitor data suggest that the Mg2+- and Ca2+-dependent ecto-ATPase may represent two different enzymes on the surface of synaptosomes.  相似文献   

3.
A Mg-dependent adenosine triphosphatase (ATPase) activated by submicromolar free Ca2+ was identified in detergent-dispersed rat liver plasma membranes after fractionation by concanavalin A-Ultrogel chromatography. Further resolution by DE-52 chromatography resulted in the separation of an activator from the enzyme. The activator, although sensitive to trypsin hydrolysis, was distinct from calmodulin for it was degraded by boiling for 2 min, and its action was not sensitive to trifluoperazine; in addition, calmodulin at concentrations ranging from 0.25 ng-25 micrograms/assay had no effect on enzyme activity. Ca2+ activation followed a cooperative mechanism (nH = 1.4), half-maximal activation occurring at 13 +/- 5 nM free Ca2+. ATP, ITP, GTP, CTP, UPT, and ADP displayed similar affinities for the enzyme; K0.5 for ATP was 21+/- 9 microM. However, the highest hydrolysis rate (20 mumol of Pi/mg of protein/10 min) was observed at 0.25 mM ATP. For all the substrates tested kinetic studies indicated that two interacting catalytic sites were involved. Half-maximal activity of the enzyme required less than 12 microM total Mg2+. This low requirement for Mg2+ of the high affinity (Ca2+-Mg2+)ATPase was probably the major kinetic difference between this activity and the nonspecific (Ca2+ or Mg2+)ATPase. In fact, definition of new assay conditions, i.e. a low ATP concentration (0.25 mM) and the absence of added Mg2+, allowed us to reveal the (Ca2+-Mg2+)ATPase activity in native rat liver plasma membranes. This enzyme belongs to the class of plasma membrane (Ca2+-Mg2+)ATPases dependent on submicromolar free Ca2+ probably responsible for extrusion of intracellular Ca2+.  相似文献   

4.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

5.
C Y Kwan 《Enzyme》1982,28(4):317-327
Studies of ATP hydrolysis by various subcellular fractions isolated from rat mesenteric arteries and veins indicate that an apparent ATPase activity, which can be activated by Mg2+ or Ca2+, is primarily associated with the plasma membranes. Although both Mg2+-activated and Ca2+-activated ATPase activities under the optimal condition are substantially lower in venous than in arterial plasma membrane fraction, their dependence on the concentration of Mg2+ and Ca2+ are quite similar in arterial as well as venous plasma membrane fractions. No synergistic effect on ATP hydrolysis was observed in the presence of both Mg2+ and Ca2+. In addition, Mg2+-activated and Ca2+-activated ATPase activities show similar pH dependence, inhibition by deoxycholate, stability toward heat inactivation and substrate specificity. Furthermore, Mg2+-activated and Ca2+-activated ATPase activities were similarly reduced in vascular smooth muscles of spontaneously hypertensive rats. These results suggest that the activation of ATP hydrolysis by Mg2+ or Ca2+ may represent a single enzyme moiety in the plasma membrane of vascular smooth muscle. The possible involvement of such ATPase in the Ca2+ transport function of vascular smooth muscle is discussed.  相似文献   

6.
The kinetics of ATP hydrolysis and cation effects on ATPase activity in plasma membrane from Candida albicans ATCC 10261 yeast cells were investigated. The ATPase showed classical Michaelis-Menten kinetics for the hydrolysis of Mg X ATP, with Km = 4.8 mM Mg X ATP. Na+ and K+ stimulated the ATPase slightly (9% at 20 mM). Divalent cations in combination with ATP gave lower ATPase activity than Mg X ATP (Mg greater than Mn greater than Co greater than Zn greater than Ni greater than Ca). Divalent cations inhibited the Mg X ATPase (Zn greater than Ni greater than Co greater than Ca greater than Mn). Free Mg2+ inhibited Mg X ATPase weakly (20% inhibition at 10 mM). Computed analyses of substrate concentrations showed that free Zn2+ inhibited Zn X ATPase, mixed (Zn2+ + Mg2+) X ATPase, and Mg X ATPase activities. Zn X ATP showed high affinity for ATPase (Km = 1.0 mM Zn X ATP) but lower turnover (52%) relative to Mg X ATP. Inhibition of Mg X ATPase by (free) Zn2+ was noncompetitive, Ki = 90 microM Zn2+. The existence of a divalent cation inhibitory site on the plasma membrane Mg X ATPase is proposed.  相似文献   

7.
Membrane adenosine triphosphatase activities in rat pancreas   总被引:3,自引:0,他引:3  
The membrane ATPase activities present in rat pancreas were studied to investigate the possible role of ATPase enzymes in HCO3(-) secretion in the pancreas. It was found that all the HCO3(-)-sensitive (anion-sensitive) ATPase activity was accountable as pancreatic mitochondrial ATPase, thus supporting the view that a distinct plasma membrane 'bicarbonate-ATPase' is not involved in HCO3(-) secretion in pancreas. A remarkably high Mg+- and CA2+-requiring ATPase activity (30 mumol ATP hydrolysed/min per mg) was found in the plasma membrane fraction (rho = 1.10-1.13). This activity has been characterized in some detail. It is inhibited by p-fluorosulfonylbenzoyladenosine, an affinity label analogue of ATP and the analogue appears to label covalently a protein of Mr approximately 35 000. The (Ca2+ + Mg2+)-ATPase activity did not form a 'phosphorylated-intermediate' and was vanadate-insensitive. These and other tests have served to demonstrate that the (Ca2+ + Mg2+)-ATPase activity is different in properties from (Na+ + K+)-ATPase, Ca2+-ATPase, (H+ + K+)-ATPase or mitochondrial H+-ATPase. Apart from the (Ca2+ + Mg2+)-ATPase of plasma membrane and mitochondrial ATPase, the only other membrane ATPase activities noted were (Na+ + K+)-ATPase, which occurred in the same fractions as the (Ca2+ + Mg2+)-AtPase at rho = 1.10-1.13 and was of surprisingly low activity, and an ATPase activity in light membrane fractions (rho - 1.08-1.09) derived from zymogen granule membranes. At this time, therefore, there is no obvious candidate for an ATPase activity at the luminal surface of pancreatic cells which is directly involved in ion transport, but the results presented here direct attention to the high activity (Ca2+ + Mg2+)-ATPase in the plasma membrane fraction.  相似文献   

8.
Potassium transport coupled to ATP hydrolysis has been reconstituted in proteoliposomes using a highly purified plasma membrane Mg2+-dependent ATPase of the yeast Schizosaccharomyces pombe. The ATPase activity in the incorporated enzyme was strongly stimulated (2.2-fold) by the H+-conducting agent carbonyl cyanide m-chlorophenylhydrazone (CCCP). The H+/K+ exchanger nigericin (in the presence of K+) stimulated 1.6-fold the ATPase activity. When both ionophores were added together, the stimulation was increased up to 2.7-fold. When a potassium concentration gradient (high K+ in) was applied to the proteoliposome membrane, a significant drop in the CCCP-stimulated ATPase activity was observed. Inversion of the K+ concentration gradient (high K+ out) did not decrease the stimulation by CCCP. High Na+ in also decreased the stimulation induced by CCCP in the absence but not in the presence of external K+. However, high Li+ in had no effect. Direct potassium efflux from the proteolyposomes was detected upon addition of MgATP using a selective K+ electrode. The ATP-dependent potassium efflux was abolished in CCCP and/or nigericin-pretreated proteoliposomes. However, during steady state ATP hydrolysis, a transient and small K+ efflux was observed upon addition of a CCCP pulse. I propose that the plasma membrane Mg2+-dependent ATPase in yeast cells not only carries out electrogenic H+ ejection but also drives the uptake of potassium via a voltage-sensitive gate which is closed in the absence and open in the presence of the membrane potential.  相似文献   

9.
High affinity Ca2+-stimulated Mg2+-dependent ATPase activity of nerve ending particles (synaptosomes) from rat brain tissue appears to be associated primarily with isolated synaptic plasma membranes. The synaptic membrane (Ca2+ + Mg2+)-ATPase activity was found to exhibit strict dependence on Mg2+ for the presence of the activity, a high affinity for Ca2+ (K0.5 = 0.23 microM), and relatively high affinities for both Mg2+ and ATP (K0.5 = 6.0 microM for Mg2+ and KM = 18.9 microM for ATP). These kinetic constants were determined in incubation media that were buffered with the divalent cation chelator trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid. The enzyme activity was not inhibited by ouabain or oligomycin but was sensitive to low concentrations of vanadate. The microsomal membrane subfraction was the other brain subcellular fraction with a high affinity (Ca2+ + Mg2+)-ATPase activity which approximated that of the synaptic plasma membranes. The two membrane-related high affinity (Ca2+ + Mg2+)-ATPase activities could be distinguished on the basis of their differential sensitivity to vanadate at concentrations below 10 microM. Only the synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was inhibited by 0.25-10 microM vanadate. The studies described here indicate the possible involvement of both the microsomal and the neuronal plasma membrane (Ca2+ + Mg2+)-ATPase in high affinity Ca2+ transport across membranes of brain neurons. In addition, they suggest a means by which the relative contributions of each transport system might be evaluated based on their differential sensitivity to inhibition by vanadate.  相似文献   

10.
The properties of Ca2+-activated and Mg2+-activated ATPases of nerve endings from mouse brain were investigated. Ca2+ and Mg2+ each can activate ATP hydrolysis in synaptosomes and its subfractions. Both Ca2+-ATPase and Mg2+-ATPase exhibit high and low affinity for their respective cations. At millimolar concentrations of Ca2+ or Mg2+, several nucleoside triphosphates could serve as substrate for the two enzymes and their specific activities were about three to four times higher in synaptic vesicles than in synaptosomal plasma membranes (SPM). Both in SPM and in synaptic vesicles the relative activity in the presence of Ca2+ was in the order of CTP greater than UTP greater than GTP = ATP, but with Mg2+ the activity was higher with ATP than with the other three triphosphates. Mg2+-ATPase was more active than Ca2+-ATPase in SPM, but in synaptic vesicles the two enzymes exhibited similar activity. Kinetic studies revealed that Mg2+-ATPase was inhibited by excess ATP and not by excess Mg2+. The simultaneous presence of Na+ + K+ stimulated Mg2+-ATPase and inhibited Ca2+-ATPase activity in intact synaptosomes and SPM. The stimulation of Mg2+-ATPase by Na+ + K+ was further increased by increasing Mg2+ concentration and was inhibited by Ca2+ and by ouabain. When Ca2+ and Mg2+ are present together in SPM or synaptic vesicles, the total Pi liberated by the two cations may either increase or decrease, depending on their relative concentrations. Kinetic analyses indicate that Ca2+ and Mg2+ bind independently to the enzyme alone or together at different sites. The results suggest that Ca2+-ATPase and Mg2+-ATPase in SPM or synaptic vesicles may be separate and distinct systems.  相似文献   

11.
The Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane was partly purified by treatments with sodium cholate and lysophosphatidylcholine, and by isopycnic centrifugation on sucrose gradients. The ATPase activity had high sensitivity to detergents, poor nucleotide specificity and broad tolerance for divalent cations. It was insensitive to mitochondrial ATPase inhibitors such as oligomycin and to transport ATPase inhibitors such as vanadate and ouabain. Using the cholate dialysis procedure, the partly purified enzyme was incorporated into asolectin vesicles. Upon addition of Mg2+-ATP, fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine (ACMA) was observed. The quenching was abolished by a protonophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Asolectin vesicles or purified ATPase alone failed to promote quenching. These data suggest that the Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane is able of H+-translocation coupled to ATP hydrolysis.  相似文献   

12.
Intact synaptosomes isolated from the electric organ of the electric ray Torpedo marmorata contain, at their surface, enzyme activities for the hydrolysis of externally applied nucleoside phosphates. The diazonium salt of sulfanilic acid, as a low-molecular-weight, slowly permeating, covalent inhibitory agent, selectively blocks these enzyme activities and leaves intracellular lactate dehydrogenase intact. The ectoenzymes comprise both a nucleoside triphosphate and diphosphate phosphohydrolase, as well as a 5'-nucleotidase. Activity of nonspecific ectophosphatases is absent. The nucleoside triphosphatase hydrolyzes almost equally well ATP, GTP, CTP, UTP, and ITP and is activated to a similar degree by Mg2+ or Ca2+. It has a high affinity for ATP (Km for ATP in the presence of Mg2+, 75 microM; in the presence of Ca2+, 66 microM). Maximal rates in the presence of Mg2+ and Ca2+ were very similar (34.8 and 32.5 nmol of Pi/min/mg of synaptosomal protein, respectively). Either Mg-ATP or Ca-ATP can act as a true substrate. ADP inhibits hydrolysis of ATP, but AMP is without effect. The nucleoside triphosphatase is not inhibited significantly by a number of inhibitors of mitochondrial Mg2+-ATPase or of Ca2+ + Mg2+-ATPases. It is, however, considerably inhibited by filipin and quercitin. The capacity of intact synaptosomes to hydrolyze also extracellular ADP, GDP, AMP, GMP, and IMP suggests that the nucleoside triphosphatase is part of an enzyme chain that causes complete hydrolysis of the respective nucleoside triphosphate to the nucleoside. We conclude that the cholinergic nerve terminals of the Torpedo electric organ can hydrolyze ATP released on coexocytosis with acetylcholine via an ectonucleoside triphosphatase activity that is different from known endogenous nerve terminal ATPases. The final product of the hydrolysis, adenosine, can then be salvaged by the nerve terminal for resynthesis of ATP. Other possible physiological functions of the ectonucleotidases are discussed.  相似文献   

13.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

14.
In the plasma membranes from several mammalian tissues (including normal and tumor tissues), a Mg2+ (or Ca2+)-dependent ATP phosphohydrolase activity is present in much greater amount than the (Na+ + K+)-ATPase. The ouabain-insensitive activity can be attributed to at least two enzymes, an ATPase (EC 3.6.1.3) and an ATP diphosphohydrolase (EC 3.6.1.5). The ATPase hydrolyzes ATP and other nucleoside triphosphates and is not inhibited by azide. The ATP diphosphohydrolase hydrolyzes both ATP and ADP (and other nucleoside tri- and diphosphates) and the hydrolysis of adenine nucleotides is strongly inhibited by 10 mM azide. The ratios of these two enzymes in the various membranes (as determined by the extent of azide inhibition) vary widely. The ATP diphosphohydrolase accounts for most of the Mg2+ (or Ca2+)-dependent ATP hydrolysis activity of the plasma membranes of liver (mouse), kidney (dog), two mouse sarcomas, and a human astrocytoma (xenograft in athymic mice). The ATPase is more dominant in the plasma membranes from mouse brain and human oat cell carcinoma. The widespread presence of the ATP diphosphohydrolase in plasma membrane from various types of tissues is demonstrated for the first time and is of particular interest in view of its relatively high activity in the plasma membranes of two sarcomas. The membrane-bound ATP diphosphohydrolase is characterized with respect to its metal ion activators, substrates, and inhibitors. These results should facilitate the distinction of this enzyme from other ATP hydrolyzing enzymes of plasma membranes in future investigations.  相似文献   

15.
The Ca2+-stimulated, Mg2+-dependent ATPase of SV40 transformed WI38 lung fibroblast homogenates exhibits a high affinity for Ca2+ (K0.5 = 0.20 microM) and moderately high affinity for ATP (Km = 28.6 microM) and Mg2+ (K0.5 = 138.5 microM). This activity was NaN3, KCN and oligomycin insensitive but very sensitive to vanadate (I50 = 0.5 microM) suggesting its being neither mitochondrial or microsomal but plasma membrane in origin. Under optimal conditions of protein, hydrogen ion and substrate concentration, 16-19 nmoles phosphate was released per min per mg protein. Hill plot analysis indicated no cooperativity to occur between Ca2+ binding sites. Nucleotides other than ATP and dATP were ineffective as substrates. The trivalent cation, lanthanum (La3+) completely inhibited hydrolysis of ATP at approximately 70 microM (I50 = 25 microM). Calmodulin antagonists trifluoperazine and calmidazolium inhibited ATP hydrolysis in a dose dependent fashion.  相似文献   

16.
With the aim to elucidate mechanism of eosin Y inhibitory effect on the Ca(2+)-transporting ATPase activity of myometrial cell plasma membrane effect of this inhibitor on the maximal initial rate of ATP hydrolysis reaction, catalyzed by Ca2+, Mg(2+)-ATPase, and on the enzyme affinity for Ca2+ was studied. It was established that eosin Y decreased the rate of Ca2+, Mg(2+)-ATPase catalitic turnover determined by Ca2+ and had no effect on enzyme affinity for this cation.  相似文献   

17.
The plasma membrane/mitochondrial fractions of Penaeus indicus postlarvae contain Mg2+-dependent ATPase, Na+,K+-stimulated ATPase, Na+-stimulated ATPase and K+-stimulated ATPase. The Na+,K+-activated, Mg2+-dependent ATPase was investigated further in relation to different pH and temperature conditions, and at various concentrations of protein, ouabain, ATP and ions in the incubation medium. In vitro and in vivo effects of lead were studied on the enzyme activity. In vitro lead inhibited the enzyme activity in a concentration-dependent manner with an IC50 value of 204.4 microM. In correlation with in vitro studies, in vivo investigations (both concentration and time dependent) of lead also indicated a gradual inhibition in enzyme activity. A maximum decrease of 85.3% was observed at LC50 (7.2 ppm) of lead for concentration-dependent experiments. In time-dependent studies, the decrease was maximal (81.7%) at 30 days of sublethal exposure (1.44 ppm). In addition, the substrate- and ion-dependent kinetics of Na+,K+-ATPase was studied in relation to in vitro exposure of lead; these studies suggest a non-competitive type of inhibition.  相似文献   

18.
Calcium-Activated ATPases in Presynaptic Nerve Endings   总被引:7,自引:5,他引:2  
We studied the properties of calcium-activated ATPases present in preparations of isolated presynaptic nerve ending (synaptosome) and its subfractions from mouse brain. ATPase activity in the preparation was stimulated by Ca2+ and by Mg2+, but not by Na+ and K+, when each was added alone. The substrate specificities were found to be similar. The ATPases hydrolyzed only the high-energy phosphate bond and similar activity was exhibited for all nucleoside triphosphates tested (ATP, CTP, GTP, UTP). Moreover, the enzymes were insensitive to mitochondrial markers and to ouabain, but were inhibited by La3+. La3+ produced uncompetitive inhibition of Ca2+-ATPase in intact synaptosomes. Inhibition by La3+ was greatly increased after lysis of the synaptosomes, suggesting that the active sites of the enzymes may be on the cytosolic face of the membranes. The Ca2+-ATPase activity in synaptosomes was increased by increasing concentrations of external K+, suggesting that Ca2+ influx may be involved The Ca2+-ATPase in synaptosomal plasma membranes and synaptic vesicles had higher specific activities than those of intact synaptosomes and were activated, both in the presence and the absence of Mg2+, by Ca2+ concentrations approximating the intracellular level (10(-7) M). It is concluded that the nonmitochondrial synaptosomal Ca2+-ATPase may play an important role in the regulation of intracellular Ca2+.  相似文献   

19.
The eosin Y inhibitory effect on the activity of smooth muscle plasma membrane Ca(2+)-transporting ATPase was studied: effect of this inhibitor on the maximal initial rate of ATP-hydrolase reaction, catalyzed by Ca2+, Mg(2+)-ATPase, on the affinity of enzyme for the reaction reagents (Ca2+, Mg2+, ATP). Dependence of eosin Y inhibitory effect on some physicochemical factors of incubation medium was studied too. It was determined that eosin Y inhibited reversibly and with high specificity purified Ca2+, Mg(2+)-ATPase solubilized from myometrial cell plasma membrane (Ki--0.8 microM), decreased the turnover rate of this enzyme determined both by Mg2+, ATP and Ca2+. This inhibitor had no effect on the enzyme affinity for Ca2+, increased affinity for Mg2+ and decreased affinity for ATP. It was determined that inhibition of Ca2+, Mg(2+)-ATPase by eosin Y depended on pH and dielectric permeability of the incubation medium: increasing of pH from 6.5 to 8.0 reduced the apparent Ki, decreasing of dielectric permeability from 74.07 to 71.19 increased the apparent Ki.  相似文献   

20.
The plasma membrane of Saccharomyces cerevisiae has a Mg2+-dependent ATPase which is distinct from the mitochondrial Mg2+-ATPase and at the pH optimum of 5.5 has a Km for ATP of 1.7 mM and a Vmax of 0.42 mumol of ATP hydrolyzed/mg/min. At least three protein components of the crude membrane (Mr = 210,000, 160,000 and 115,000) are labeled with [gamma"32P]ATP at pH 5.5. These phosphoproteins form rapidly in the presence of Mg2+, rapidly turn over the bound phosphate when unlabeled ATP is added, and dephosphorylate after incubation in the presence of hydroxylamine. Vanadate, an inhibitor of the Mg2+-ATPase activity, blocks the phosphorylation of the 210,000- and 115,000-dalton proteins. At pH 7.0, only the 210,000- and 160,000-dalton proteins are phosphorylated. While these three phosphorylated intermediates have not been unambiguously identified as components of the Mg2+-ATPase, the finding of such phosphorylated components in association with that activity implies that this enzyme differs in mechanism from the mitochondrial proton pump and that it is similar in mechanism to the metal ion pumps ((Na+-K+)-ATPase and Ca2+-ATPase) of the mammalian plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号