首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Brief Review of Metazoan Phylogeny and Future Prospects in Hox-Research   总被引:1,自引:0,他引:1  
Underlying any analysis on the evolution of development is aphylogenetic framework, whether explicitly stated or implied.As such, differing views on phylogenetic relationships leadto variable interpretations of how developmental mechanismshave changed through time. Over the past decade, many long-standinghypotheses about animal evolution have been questioned causingsubstantial changes in the assumed phylogenetic framework underlyingcomparative developmental studies. Current hypotheses aboutearly metazoan history suggest that three, not two, major lineagesof bilateral animals originated in the Precambrian: the Deuterostomes(e.g., seastars, acorn worms, and vertebrates), the Ecdysozoans(e.g., nematodes and arthropods), and the Lophotrochozoans (e.g.,annelids, mollusks, and lophophorates). Although informationin Hox-genes bears directly on our understanding of early metazoanevolution and the formation of body plans, research effort hasbeen focused primarily on two taxa, insects and vertebrates.By sampling a greater diversity of metazoan taxa and takingadvantage of biotechnological advances in genomics, we willnot only learn more about metazoan phylogeny, but will alsogain valuable insight as to the key evolutionary forces thatestablished and maintained metazoan bauplans.  相似文献   

2.
The Symposium "Zebrafish in Comparative Context" was organizedto bring together two largely separate but highly complementaryresearch traditions in order to make developmental and geneticinformation about a model species (Danio rerio, the zebrafish)more accessible to the comparative biology community. The meetingfocused on the relationship of this model organism to othervertebrates (particularly other fishes) using a comparativeand evolutionary approach. Topics included the phylogeny ofcypriniform fishes, genome evolution, the evolution of gastrulation,dentition, pigmentation, craniofacial development, and nervoussystem structure and function. Participants also met informallyto discuss ways to facilitate collaborative projects in areasof common interest and determine priorities for the developmentof shared resources. Continuing interactions between comparativebiologists, with their extensive body of knowledge of morphologicalvariation among fish species, and developmental biologists andgeneticists working with model species such as the zebrafishwill facilitate our understanding of the evolution of developmentalpatterns and processes in vertebrates.  相似文献   

3.
The diverse morphologies among vertebrate species stems from the evolution of a basic body plan that is constituted by a spatially organized ensemble of tissue lineage progenitors. At gastrulation, this body plan is established through a coordinated morphogenetic process and the delineation of tissue lineages that are driven by the activity of the genome. To explore the molecular mechanisms, in a comprehensive context, it is imperative to glean an understanding of the region-and population-specific genetic activity underpinning this fundamental developmental process. In this review, we outline the recent progress and the future directions in studies of genome activity for the regulation of mouse embryogenesis at gastrulation.  相似文献   

4.
Evolutionary developmental biology is inevitably a comparativesubject. However, the taxonomic level at which comparisons canbe made varies widely, and this greatly affects the kind ofinformation that can be gained from the comparison. Broadlyspeaking, high-level comparisons (e.g., between phyla) are moreinformative about phylogenetic pattern and homology, while low-levelcomparisons (e.g., between congeneric species) are more informativeabout evolutionary mechanisms, including speciation. However,so far evolutionary developmental biology has had a relativelyminor input into the traditional territory of population genetics,namely comparisons within species—both within and betweengeographic populations. Yet this area is crucial, as all evolutionarynovelties ultimately arise from intraspecific variation. Here,I address this issue, focusing on the question of how earlyin development novelties arise. To shed light on this question,I discuss two examples of developmental polymorphism withinspecies involving two of the main body axes: anteroposteriorsegmentation in centipedes and left–right asymmetry (chirality)in gastropods.  相似文献   

5.
All chordates share a basic body plan and many common features of early development. Anteroposterior (AP) regions of the vertebrate neural tube are specified by a combinatorial pattern of Hox gene expression that is conserved in urochordates and cephalochordates. Another primitive feature of Hox gene regulation in all chordates is a sensitivity to retinoic acid during embryogenesis, and recent developmental genetic studies have demonstrated the essential role for retinoid signalling in vertebrates. Two AP regions develop within the chordate neural tube during gastrulation: an anterior 'forebrain-midbrain' region specified by Otx genes and a posterior 'hindbrain-spinal cord' region specified by Hox genes. A third, intermediate region corresponding to the midbrain or midbrain-hindbrain boundary develops at around the same time in vertebrates, and comparative data suggest that this was also present in the chordate ancestor. Within the anterior part of the Hox-expressing domain, however, vertebrates appear to have evolved unique roles for segmentation genes, such as Krox-20, in patterning the hindbrain. Genetic approaches in mammals and zebrafish, coupled with molecular phylogenetic studies in ascidians, amphioxus and lampreys, promise to reveal how the complex mechanisms that specify the vertebrate body plan may have arisen from a relatively simple set of ancestral developmental components.  相似文献   

6.
Comparative analysis of early embryogenesis indicates that considerable differences exist among nematode species. To better understand to what extent the well-studied development of Caenorhabditis elegans is representative for nematodes in general, we extended our earlier studies to other families of this phylum. Here we report our findings on seven species of Plectidae. We found that Plectidae embryos share a number of developmental similarities with one branch of nematodes (Secernentea), including C. elegans, but not with the other branch (Adenophorea), and thus support conclusions concerning their phylogenetic position drawn from molecular data. However, Plectidae also show developmental differences to other Secernentea, suggesting an early separation from them. Prominent characteristics of Plectidae are (1) strict left-right divisions of somatic founder cells generating a prominent early bilateral symmetry and (2) a very early start of gastrulation with immigration of a single gut precursor cell. To determine whether gastrulation with two gut precursors is crucial for C. elegans embryos, we induced it to gastrulate with a single blastomere like in Plectidae. As this alteration is compatible with an essentially normal subsequent embryogenesis, cleavage of the gut precursor before gastrulation is obviously not required. As major differences exist among nematodes concerning the potential to compensate for eliminated early blastomeres, we tested this feature in one Plectus species. We found that Plectus does not replace a lost cell but behaves like C. elegansin this respect, in contrast to our previous findings in Acrobeloides nanus, another member of the Secernentea.  相似文献   

7.
Comparative methods in developmental biology   总被引:3,自引:0,他引:3  
The need for a phylogenetic framework is becoming appreciated in many areas of biology. Such a framework has found limited use in developmental studies. Our current research program is therefore directed to applying comparative and phylogenetic methods to developmental data. In this paper, we examine the concepts underlying this work, discuss potential difficulties, and identify some solutions. While developmental biologists frequently make cross-species comparisons, they usually adopt a phenetic approach, whereby degrees of overall similarity in development are sought. Little emphasis is placed on reconstructing the evolutionary divergence in developmental characters. Indeed, developmental biologists have historically concentrated on apparently ‘conserved’ or ‘universal’ developmental mechanisms. Thus, there has been little need for phylogenetic methodologies which analyse specialised features shared only within a subset of species (i.e., synapomorphies). We discuss the potential value of such methodologies, and argue that difficulties in adapting them to developmental studies fall into three interlinked areas: One concerns the nature and definition of developmental characters. Another is the difficulty of identifying equivalent developmental stages in different species. Finally the phylogenetic non-independence of developmental characters presents real problems under some protocols. These problems are not resolved. However, it is clear that the application of phylogenetic methodology to developmental data is both necessary and fundamental to research into the relationship between evolution and development.  相似文献   

8.
The early development up to the end of gastrulation of the marineprosobranch Nassarius (Hinia) reticula-tus (Linnaeus) has beenexamined by scanning and transmission electron microscopy. Thesynchrony of the cleavage divisions ends with the formationof the second quartet. The somatoblast 2d and the mesen-toblast4d appear earlier than the other micromeres of their quartets.From the 16- to the 32-cell stage the turret cells have an outgrowth.At the end of cleavage, Nassarius shows a typical sterroblastula.During gastrulation, the epibolic encirclement of the yolk macromeresby the micromeres is produced by an active flattening of themicromere cap and at the end of gastrulation the blastoporeis completely closed. The nuclei of the four yolk macromeresmigrate from the animal cell regions towards the vegetativepole. The development of Nassarius reticulatus is very similarto that of the related species llyanassa obsoleta (Say). (Received 19 December 1990; accepted 18 August 1991)  相似文献   

9.
SUMMARY Comprehensive integrative studies are the hallmark of evolutionary developmental biology. A properly defined phylogenetic framework takes a central place in such analyses as the meeting ground for observation and inference. Molecular phylogenies take this place in many current studies on animal body plan evolution. In particular, 18S rRNA/DNA sequence analyses have yielded a new view of animal evolution that is often contrasted with a presumed traditional or classical view. First, I expose this traditional view to be a simplified historical abstraction that became textbook dogma. Second, I discuss how two recent important studies of animal body plan evolution, examining the evolution of the platyhelminth body plan and the evolutionary significance of indirect development and set-aside cells, have actively incorporated two problematic aspects of the newly emerging molecular view of animal evolution: incomplete and unresolved phylogenies.  相似文献   

10.
Haeckel's studies of development in calcareous sponges (1872)led him to develop the "Gastraea Theory," which proposes thatthe ancestral mode of germ layer formation, or gastrulation,was by invagination to produce a functional gut. His observationsthat gastrulation in the Calcarea occurs by invagination ofa ciliated larva upon settlement and metamorphosis were supportedby remarkable photomicrographs of the stage by Hammer in 1908.Although no later work found the same stage, these conceptsare repeated in texts today. We have re-examined embryogenesisand metamorphosis in Sycon sp. cf. S. raphanus in order to understandwhen gastrulation occurs. Almost all larvae settle on theirciliated anterior pole and metamorphose into a bilayered juvenilewhose interior cells rapidly differentiate into choanocytesand other cells of the young sponge. After a four-year searchwe have found the transitory stage shown by Hammer in whichthe anterior cells invaginate into the posterior half of thelarva. The hole closes and it is not until some days later thatthe sponge forms an osculum at its apical pole. To understandwhether invagination comprises gastrulation and if the holecan be considered to be a blastopore we have carried out a reviewof the literature dealing with this brief moment in calcaroneansponge development. Despite the intrigue of this type of metamorphosis,we conclude that gastrulation occurs earlier, during formationof the two cellular regions of the larva, and that metamorphosisinvolves the reorganization of these already differentiatedregions. Considering the pivotal position occupied by the Calcareaas the possible sister-group to all other Metazoa, these resultscall for a reassessment of germ layer formation and of the relationshipsof the primary germ layers among basal metazoan phyla.  相似文献   

11.
12.
Although it is rarely considered so in modern developmental biology, morphogenesis is fundamentally a biomechanical process, and this is especially true of one of the first major morphogenic transformations in development, gastrulation. Cells bring about changes in embryonic form by generating patterned forces and by differentiating the tissue mechanical properties that harness these forces in specific ways. Therefore, biomechanics lies at the core of connecting the genetic and molecular basis of cell activities to the macroscopic tissue deformations that shape the embryo. Here we discuss what is known of the biomechanics of gastrulation, primarily in amphibians but also comparing similar morphogenic processes in teleost fish and amniotes, and selected events in several species invertebrates. Our goal is to review what is known and identify problems for further research.  相似文献   

13.
Reef-building scleractinian corals widely engage in symbiotic relationships with Symbiodinium dinoflagellates (zooxanthellae), which reside inside cells of the gastrodermis. In most cases, sexually produced larvae acquire their symbionts from the environment in the early developmental stages preceding settlement; however, some scleractinian corals maternally "seed" their oocytes with symbionts, and these symbionts are reported to be restricted to the gastrodermis at the time of its formation (gastrulation). A precise mechanism for how Symbiodinium are translocated to endoderm in these seeded species was previously unknown. In order to examine the process of endoderm formation and Symbiodinium localization during gastrulation, we have examined two species of "robust" clade scleractinians: Fungia scutaria (nonseeded) and Pocillopora meandrina (maternally seeded). We determined that both species, independent of whether or not they are seeded, undergo a "nutritive" stage before gastrulation, wherein lipid-rich cells (F. scutaria) or membrane-bound cellular fragments (P. meandrina) are passed to the blastocoel where they are subsequently taken up by the definitive endoderm. This emergent property of anthozoan development has been co-opted to facilitate the movement of Symbiodinium to the blastocoel (future site of endoderm), in the seeded species, where they are later phagocytosed by the newly formed definitive endoderm. Additionally, both species of robust clade scleractinians examined gastrulate by way of invagination, as do the majority of anthozoans. This invagination differs from the prawn chip-type gastrulation seen in the complex clade corals and provides evidence for a possible linkage between gastrulation type and phylogenetic history.  相似文献   

14.
15.
Developmental changes in interrenal responsiveness in anuran amphibians   总被引:2,自引:2,他引:0  
Basal activity of the hypothalamo-pituitary-interrenal (HPI)axis changes over development in larval amphibians, but developmentof the responsiveness of this axis to an external stressor hasnot been studied. We compared developmental changes in whole-bodycorticosterone content of two anuran amphibian species, Ranapipiens (family Ranidae) and Xenopus laevis (family Pipidae).We also examined developmental changes in the responsivenessof the HPI axis by subjecting tadpoles of different developmentalstages to a laboratory shaking/confinement stress and to ACTHinjection. We measured whole-body corticosterone content asan indicator of the activity of the HPI axis. Whole-body corticosteronecontent of R. pipiens remained low during premetamorphosis andprometamorphosis but increased dramatically at metamorphic climaxand remained elevated in juvenile frogs. By contrast, whole-bodycorticosterone content of X. laevis was highest during premetamorphosis,declined at the onset of prometamorphosis, increased at metamorphicclimax and remained at climax levels in juvenile frogs. Premetamorphicand prometamorphic tadpoles of both species showed strong corticosteroneresponses to both shaking stress and ACTH injection. The magnitudeand pattern of response differed among developmental stages,with premetamorphic tadpoles of both species showing greaterresponsiveness to stress and ACTH. Our results show that interrenalresponsiveness is developed in premetamorphic tadpoles, suggestingthat at these stages tadpoles are capable of mounting an increasein stress hormone production in response to changes in the externalenvironment. Our results also highlight the importance of comparativestudies in understanding the development of the stress axis.  相似文献   

16.
Embryology of the Turbellaria and its phylogenetic significance   总被引:4,自引:4,他引:0  
Developmental characters — including oocyte and yolk cell structure, patterns of cleavage, and modes of gastrulation — are presented and examined in relation to the phylogeny of the Turbellaria. Eggshell granules, which have been demonstrated to occur in the oocytes of entolecithal eggs and the yolk cells of ectolecithal eggs, are compared among species, and their potential value as a taxonomic character is discussed. The quartet 4d spiral cleavage of the entolecithal egg of polyclads is described as reminiscent of the primitive pattern of early development for the Turbellaria. This is compared to duet spiral cleavage of acoels, and possible phylogenetic schemes involving the two types of spiral cleavage are reviewed. The link between the precise spiral cleavage, which characterizes development of most archoophorans, and blastomere separation (Blastomeren-Anarchie), which occurs in several neoophoran orders, is established by the occurrence of quartet 4d spiral cleavage in one neoophoran order, and of both quartet spiral cleavage and Blastomeren-Anarchie in different species of a second neoophoran order. The epibolic gastrulation of polyclads is described as primitive for the Turbellaria because of its similarity to that of other members of the Spiralia. Although no identical process occurs in neoophoran development, the earlier event of formation of the hull membrane in some neoophorans, and the later event of formation of the definitive epidermis in all neoophorans studied are presented as processes of possible homology to the epibolic gastrulation of polyclads. The lack of correspondence between polyclads and neoophorans in the relationship of the definitive body axes to the egg axis is discussed, and an hypothesis is advanced to account for the differences. The phylogenetic relationships indicated by known developmental phenomena differ only slightly from the scheme presented by Karling in 1974.  相似文献   

17.
The forkhead gene FH1 encodes a HNF-3beta protein required for gastrulation and development of chordate features in the ascidian tadpole larva. Although most ascidian species develop via a tadpole larva, the conventional larva has regressed into an anural (tailless) larva in some species. Molgula oculata (the tailed species) exhibits a tadpole larva with chordate features (a dorsal neural sensory organ or otolith, a notochord, striated muscle cells, and a tail), whereas its sister species Molgula occulta (the tailless species) has evolved an anural larva, which has lost these features. Here we examine the role of FH1 in modifying the larval body plan in the tailless species. We also examine FH1 function in tailless speciesxtailed species hybrids, in which the otolith, notochord, and tail are restored. The FH1 gene is expressed primarily in the presumptive endoderm and notochord cells during gastrulation, neurulation, and larval axis formation in both species and hybrids. In the tailless species, FH1 expression is down-regulated after neurulation in concert with arrested otolith, notochord, and tail development. The FH1 expression pattern characteristic of the tailed species is restored in hybrid embryos prior to the development of chordate larval features. Antisense oligodeoxynucleotides (ODNs) shown previously to disrupt FH1 function were used to compare the developmental roles of this gene in both species and hybrids. As described previously, antisense FH1 ODNs inhibited endoderm invagination during gastrulation, notochord extension, and larval tail formation in the tailed species. Antisense FH1 ODNs also affected gastrulation in the tailless species, although the effects were less severe than in the tailed species, and an anural larva was formed. In hybrid embryos, antisense FH1 ODNs blocked restoration of the otolith, notochord, and tail, reverting the larva back to the anural state. The results suggest that changes in FH1 expression are involved in re-organizing the tadpole larva during the evolution of anural development.  相似文献   

18.
为了探讨中国黄粉蝶亚科属间的系统发育关系,我们对其中6属9种的细胞色素氧化酶Ⅱ(COⅡ)的部分序列和延伸因子基因(EF-1α)部分序列进行了分析。分别采用最大简约法(maximum parsimony, MP)、最大似然法(maximum likelihood, ML)和贝叶斯推论法(bayesian inference, BI)构建黄粉蝶亚科分子系统树。结果表明:在测得的COⅡ基因的648 bp序列和EF-1α基因的504 bp序列中,有261个变异位点,151个简约信息位点,黄粉蝶亚科内各属COⅡ基因A+T含量(77.3%)均明显偏高。系统发育分析显示黄粉蝶属为亚科中较为原始的类群,分化较早,豆粉蝶属和迁粉蝶属亲缘关系较近,但钩粉蝶属与豆粉蝶属、迁粉蝶属之间的亲缘关系还不能确定。本研究结果和传统的基于形态学的黄粉蝶亚科的分类体系有所不同,最显著的分歧是本研究支持内群中分化最早的属应为黄粉蝶属,而不是豆粉蝶属和迁粉蝶属。  相似文献   

19.
以11种限制性内切酶对新疆荒漠中的9种束颈蝗和与其近缘的细距蝗Leptopternis gracilis,旋跳蝗Helioscirtus moseri moseri 及远缘的意大利蝗Calliptamus italicus italicus,红翅瘤蝗Dericorys roseipennis的线粒体DNA进行了长度片段多态性的研究。根据所得的酶切类型,计算了种间每核苷酸位点的平均碱基取代值P(遗传距离)。用UPGMA法构建分子系统树。结果表明,束颈蝗属种间的P值约为 0.099~0.146,与近缘种属间约0.100~0.205,与远缘种属间约为0.113~0.206。估算出束颈蝗属种间的分歧年代约在1000~1500万年前,处于中新世中期,将实验结果与形态演化比较分析,探讨束颈蝗的系统进化。  相似文献   

20.
Stage Development and Flowering in Dactylis glomerata L.   总被引:1,自引:0,他引:1  
CALDER  D. M. 《Annals of botany》1964,28(2):187-206
The results of pilot experiments lead to the conclusion thatD. glomerata exhibits a number of developmental stages: firstly,a juvenile stage during which the plant is insensitive to environmentalconditions which later stimulate flowering; secondly, an inductivestage, when the plant responds to periodic exposure to darknessat the conclusion of which it is fully induced or ripe to flower,and finally, a post-inductive stage during which inflorescencesare initiated and undergo further development; these are long-dayprocesses. In four populations studied the juvenile stage lasts about fiveweeks. In north European material daily exposure to seven hoursof darkness is near the minimum for induction although thereis considerable within-population variation. Further, it appearsthat the daily dark requirement becomes less as the plant ages. Comparisons are made of the flowering behaviour of D. glomerataand Lolium perenne. The differences between these species resultfrom the presence of a juvenile stage in Dactylis and the possibilityof satisfying its inductive requirement by long days. Inductionin Lolium requires short days or low temperature. The significance of these results is discussed in the lightof previous work on the environmental control of flowering inherbage grasses. The existence of three developmental stagescan explain the wide differences in interpretation of the floweringrequirements of Dactylis previously held. The possible evolutionof flowering requirements is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号