首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies specific for acetylated isoforms of histone H4 have been used to compare acetylation of this histone in interphase and metaphase cells. Two rabbit antisera (R5 and R6) were used, each specific for H4 molecules acetylated at one of the four possible acetylation sites, namely Lys-5 (R6) and Lys-12 (R5). Both antisera bound preferentially to the more-acetylated H4 isoforms (H4Ac2-4). To test for continued H4 acetylation in metaphase chromosomes. Chinese hamster ovary cells were blocked in metaphase and treated for one hour with the deacetylase inhibitor sodium butyrate. Isolated chromosomes were assayed for H4 acetylation by antibody labeling and flow cytometry. H4 acetylation was increased several fold by this brief butyrate treatment. The increase was in direct proportion to DNA content, with no evidence for exceptionally high- or low-labeling chromosomes. The results demonstrate that a cycle of H4 acetylation and deacetylation continues within metaphase chromosomes. Immunofluorescence microscopy showed labeling to be distributed throughout the chromosome, but with variable intensity. Western blotting and immunostaining with R5 and R6 showed a net reduction in labeling of H4 from metaphase cells, with major reductions in the more-acetylated isoforms H4Ac3-4. In contrast, labeling of H4Ac1 was reduced to a lesser extent (R6) or increased (R5). This increase indicates more frequent use of the acetylation site at lysine 12 in H4Ac1 from metaphase cells.  相似文献   

2.
3.
4.
5.
In humans, it is thought that the X-inactivation phenomenon occurs no matter how many X chromosomes are present, and that only one of them remains active. Nevertheless, individuals who have an abnormal number of X chromosomes show a wide spectrum of abnormalities, which increase with the number of X chromosomes present in a given individual. It has been shown that the inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, and that this could be used as an accessible marker for distinguishing between Xi and Xa in spreads of metaphase chromosomes. We studied three X-polysomic patients for the presence of active chromatin by analysis of histone H4 acetylation on unfixed metaphase spreads. Using antisera to H4 acetylated at lysines 16, 8 and 5, respectively, we observed frequencies different from those expected from cells with only one underacetylated X chromosome. In particular, when antiserum to H4 acetylated at lysine 16 was used about 90% of the cells showed acetylation of all X chromosomes. This suggests a possible disturbance in the deacetylation process, probably due to the presence of multiple Xs. Received: 25 April 1997 / Accepted: 15 March 1998  相似文献   

6.
7.
The effects of butyrate upon the extents of phosphorylation of histones H1 and H1(0) during cell-cycle progression have been investigated. Chinese hamster (line CHO) cells were synchronized in early S phase and released into medium containing 0 or 15 mM butyrate to resume cell-cycle traverse into G1 of the next cell cycle. Cells were also mechanically selected from monolayer cultures grown in the presence of colcemid and 0 or 15 mM butyrate to obtain greater than 98% pure populations of metaphase cells. Although cell cycle progression is altered by butyrate, electrophoretic patterns of histones H1, H1(0), H3, and H4 indicate that butyrate has little, if any, effect on the extents of H1 and H1(0) phosphorylation during the cell cycle or the mitotic-specific phosphorylation of histone H3. Butyrate does, however, inhibit removal of extraordinary levels of histone H4 acetylation (hyperacetylation) during metaphase, and it appears to cause an increase in the content of H1(0) in chromatin during the S or G2 phases of the cell cycle.  相似文献   

8.
9.
10.
Diallyl disulfide (DADS) is an organosulfur compound from garlic which exhibits various anticarcinogenic properties including inhibition of tumor cell proliferation. DADS antiproliferative effects were previously associated with an increase in histone acetylation in two human tumor colon cell lines, suggesting that DADS-induced histone hyperacetylation could be one of the mechanisms involved in its protective properties on colon carcinogenesis. The effects of DADS on histone H4 and H3 acetylation levels were investigated in vivo in colonocytes isolated from non-tumoral rat. Administrated by intracaecal perfusion or gavage, DADS increases histone H4 and H3 acetylation in colonocytes. Moreover, data generated using cDNA expression arrays suggest that DADS could modulate the expression of a subset of genes. These results suggest the involvement of histone acetylation in modulation of gene expression by DADS in normal rat colonocytes, which might play a role in its biological effects as well as in its anticarcinogenic properties in vivo.  相似文献   

11.
Valproic acid (VPA), a histone deacetylase inhibitor, causes differentiation in different cell lines and in a cell-specific manner; yet, its effect on megakaryocytic (MK) differentiation has not been studied. We evaluated whether VPA induces MK differentiation in a UT-7 cell line through histone acetylation in the GpIIIa gene region and activation of the ERK pathway. UT-7 cells, derived from megakaryoblastic leukemia, were treated with VPA at various concentrations, and the expression of differentiation markers as well as the gene expression profile was assessed. Flow cytometry, immunoblot analysis, and RT-PCR demonstrated that VPA induced the expression of the early MK markers GpIIIa (CD61) and GpIIb/IIIa (CD41) in a dose-dependent manner. The VPA-treated cells showed hyperacetylation of the histones H3 and H4; in particular, histone acetylation was found to have been associated with CD61 expression, in that the GpIIIa promoter showed H4 hyperacetylation, as demonstrated by the chromatin immunoprecipitation assay. Furthermore, activation of the ERK pathway was involved in VPA-mediated CD61/CD41 expression and in cell adhesion, as demonstrated by using the MEK/ERK inhibitor U0126. In conclusion, the capacity of VPA to commit UT-7 cells to MK differentiation is mediated by its inhibitory action on HDAC and the long-lived activation of ERK1/2.  相似文献   

12.
Histone acetylation is a key modification that regulates chromatin accessibility. Here we show that treatment with butyrate or other histone deacetylase (HDAC) inhibitors does not induce histone hyperacetylation in metaphase-arrested HeLa cells. When compared to similarly treated interphase cells, acetylation levels are significantly decreased in all four core histones and at all individual sites examined. However, the extent of the decrease varies, ranging from only slight reduction at H3K23 and H4K12 to no acetylation at H3K27 and barely detectable acetylation at H4K16. Our results show that the bulk effect is not due to increased or butyrate-insensitive HDAC activity, though these factors may play a role with some individual sites. We conclude that the lack of histone acetylation during mitosis is primarily due to changes in histone acetyltransferases (HATs) or changes in chromatin. The effects of protein phosphatase inhibitors on histone acetylation in cell lysates suggest that the reduced ability of histones to become acetylated in mitotic cells depends on protein phosphorylation.  相似文献   

13.
14.
15.
Modification of histones by acetylation is a well-known mechanism for the establishment and maintenance of specific chromatin structures with different activity states. In Planococcus citri males the paternal genome, early in development, becomes mostly inactive and heterochromatic. As we had not found methylation in the genome of P. citri, we analyzed the acetylation state of histone H4. We report here that, in males, differences in the level of histone H4 acetylation are indeed present in the two genomes of different parental origin; these differences were confirmed by treatment with the histone deacetylase inhibitor Trichostatin A. There is also evidence of acetylation of histone H4 on metaphase chromosomes. Our data therefore suggest a role of histone H4 acetylation in the imprinting of the paternal genome in P. citri males, thus supporting a role of modification of chromatin-related structural proteins in the epigenetic transmission of imprinting.  相似文献   

16.
Histone acetylation of Murine Erythroleukemia Cells (MELC) has been re-examined. It is demonstrated that sodium butyrate causes hyperacetylation of core histones in inducible as well as non-inducible MELC strains. This indicates that histone hyperacetylation per se is not sufficient to activate genes. However, [3H]acetate incorporation into core histones of the inducible MELC line F4N increases after induction of differentiation with dimethylsulfoxide (DMSO), in contrast to the non-inducible variant F4+. Thus histone acetylation may play a role as an auxiliary mechanism for gene activation (and inactivation). In addition, the appearance of a histone H3 variant during differentiation of MELC is reported.  相似文献   

17.
18.
Nuclear core histone modifications influence chromosome structures and functions. Recently, the involvement of histone acetylations in the cell memory of gene expression has been suggested in mouse oocyte maturation. At present, there is little available data on histone modifications in mammalian oocyte maturation. In the present study, we examined changes in the acetylation of histone H3 lysines 9 (H3K9) and 14 (H3K14), and histone H4 lysines 5 (H4K5), 8 (H4K8) and 12 (H4K12), and trimethylation of H3K9 during in vitro maturation of porcine oocytes. Immunocytochemical analyses revealed that the all of the lysines examined were highly acetylated in the germinal vesicle stage, and this level of acetylation was maintained until the first prometaphase. In the first metaphase, the lysines near the N-terminal end, H3K9 and H4K5, were completely deacetylated. The acetylation of the lysines far from the N-terminal end, H3K14, H4K8, and H4K12, was markedly decreased but still present. The acetylations were increased transiently at the first anaphase and telophase, and then decreased again at the second metaphase to the same level as the first metaphase. Since effective concentrations of trichostatin A (TSA) to inhibit the deacetylation were different in various lysine residues, multiple histone deacetylases (HDACs) were suggested to function during meiotic maturation. The trimethylation of H3K9 was maintained in a high level throughout maturation. These results suggest that the histone acetylation during porcine oocyte maturation is precisely controlled by the cell cycle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号