首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Channeling of urea cycle intermediates in situ in permeabilized hepatocytes   总被引:2,自引:0,他引:2  
Preferential use of endogenously generated intermediates by the enzymes of the urea cycle was observed using isolated rat hepatocytes made permeable to low molecular weight compounds with alpha-toxin. The permeabilized cells synthesized [14C]urea from added NH4Cl, [14C]HCO3-, ornithine, and aspartate, using succinate as a respiratory substrate; with all substrates saturating, about 4 nmol of urea were formed per min/mg dry weight of cells. Urea usually accounted for about 40-50% of the total (NH3 + ornithine)-dependent counts, arginine for less than 10%, and citrulline for about 30%. Very tight channeling of arginine between argininosuccinate lyase and arginase was shown by the fact that the addition of a 200-fold excess of unlabeled arginine to the incubations did not decrease the percentage of counts found in urea or increase that found in arginine, even though a substantial amount of the added arginine was hydrolyzed inside the cells. The channeling of argininosuccinate between its synthetase and lyase was demonstrated by similar observations; unlabeled argininosuccinate added in 200-fold excess decreased the percentage of counts in urea by only 25%. Channeling of citrulline from its site of synthesis by ornithine transcarbamylase in the mitochondrial matrix to argininosuccinate synthetase in the cytoplasmic space was also shown. These results strongly suggest that the three "soluble" cytoplasmic enzymes of the urea cycle are grouped around the mitochondria and are spatially organized within the cell in such a way that intermediates can be efficiently transferred between them.  相似文献   

2.
Two enzymes catalyze the synthesis of carbamylphosphate (CP) in the liver. One is intramitochondrial and utilizes ammonia to make CP for ureagenesis; the second is cytoplasmic and utilizes glutamine to produce CP for pyrimidine biosynthesis. The extent to which the metabolic independence of the two pathways is abridged by the use of a common precursor was examined with measurements of the incorporation of [14C]NaHCO3 into orotic acid, uridine nucleotides, and urea in isolated hepatocytes. Pyrimidine synthesis was markedly stimulated by physiological concentrations of ammonia, and the stimulation was antagonized by ornithine. At intracellular concentrations of ornithine and levels of ammonia found in the portal circulation, some 90% of pyrimidine synthesis was ammonia-dependent. When the glutamine-dependent activity was released from feedback inhibition with galactosamine, the ammonia-dependent incorporation still accounted for 2/3 of pyrimidine synthesis. These results do not support the widely held view that the cytoplasmic enzyme is the sole source of CP for pyrimidine biosynthesis in the liver. They suggest instead that the bulk of the CP incorporated into hepatic pyrimidines is of mitochondrial origin. However, an experiment with intact animals failed to provide decisive evidence on this interpretation. Pyrimidine biosynthesis was sharply inhibited by the addition of uridine, but ureagenesis was unaffected. When physiological levels of ammonia were provided, the sensitivity of pyrimidine biosynthesis to uridine was lost. Although inhibition of the ammonia-dependent enzyme by pyrimidines has been observed with cell-free preparations, it was not evident in the intact cell. Thus, to the extent that the CP consumed in pyrimidine biosynthesis is of mitochondrial origin, feedback control of the orotate pathway appears to be thwarted.  相似文献   

3.
《Biochemical medicine》1976,15(3):221-222
To our knowledge, there exists no single rapid technique for the quantitative separation of the amino acid intermediates of the Krebs-Henseleit urea cycle. In this cycle, ammonia is converted to urea by a series of reaction beginning with the condensation of l-ornithine with carbamyl phosphate and proceeds sequentially through citrulline, argininosuccinic acid, and, finally, arginine, which is the cleaved to form urea with regeneration of ornithine.This communication describes chromatographic methods which have been found to give satisfactory separation of these compounds in a variety of mixtures. The time required for the separations is slightly over 2 hr which compares favorably with the 12–18 hr needed for papar chromatography or the time required for separations by automatic amino acid analyzers.  相似文献   

4.
Control by pH of urea synthesis in isolated rat hepatocytes   总被引:2,自引:0,他引:2  
Control by pH of urea synthesis has been studied in isolated rat hepatocytes incubated with a physiological mixture of amino acids. Inhibition of urea synthesis by decreasing the pH of the medium was caused by diminished production of ammonia and not, as suggested in the literature, by inhibition of entry of ammonia into the ornithine cycle. The decrease by low pH of the rate of degradation of the added amino acids, that of alanine being quantitatively the most important, was accompanied by a decrease in their intracellular concentration. It is concluded that inhibited transport of amino acids across the plasma membrane of the hepatocyte is responsible, at least in part, for the fall in urea synthesis with decreasing pH. It is proposed that inhibition by low pH of other steps in the ureogenic pathway, distal to the production of ammonia, does not affect flux through the ornithine cycle per se, but rather contributes to the buffering of the intrahepatic concentration of ammonia.  相似文献   

5.
1. In hepatocytes isolated from 24 h-starved rats, urea production from ammonia was stimulated by addition of lactate, in both the presence and the absence of ornithine. The relationship of lactate concentration to the rate of urea synthesis was hyperbolic. 2. Other glucose precursors also stimulated urea production to varying degrees, but none more than lactate. Added oleate and butyrate did not stimulate urea synthesis. 3. Citrulline accumulation was largely dependent on ornithine concentration. As ornithine was increased from 0 to 40 mM, the rate of citrulline accumulation increased hyperbolically, and was half-maximal when ornithine was 8-12 mM. 4. The rate of citrulline accumulation was independent of the presence of lactate, but with pyruvate the rate increased. 5. The rate of urea production continued to increase as ornithine was varied from 0 to 40 mM. 6. It was concluded that intermediates provided by both ornithine and lactate are limiting for urea production from ammonia in isolated liver cells. It was suggested that the stimulatory effect of lactate lies in increased availability of cytosolic aspartate for condensation with citrulline.  相似文献   

6.
1. 6-aminonicotinamide (6AN), a purported inhibitor of 6-phosphogluconate (6PG) dehydrogenase, has been regarded as an inhibitor of the pentose cycle. 2. Incubation of isolated hepatocytes with 6AN caused a time- and concentration-dependent accumulation of 6PG. 3. At 5 mM, 6AN increased the 6PG level 1000-times to values comparable to those observed in the livers of rats injected with this niacin antagonist. 4. Despite the accumulation of 6PG, neither the total rate of lipogenesis, nor the incorporation of radioactivity from [3-3H]glucose, used to estimate the activity of the pentose cycle, were impaired to a large extent. 5. The evidence presented suggests that the accumulation of 6PG is not a sufficient criterion to establish blockade of the pentose cycle.  相似文献   

7.
The uptake of ornithine by isolated hepatocytes and by the particulate fraction of these cells was measured under various conditions of urea synthesis. Under conditions of maximum urea synthesis, i.e. in the presence of glucose, ornithine, ammonium chloride and oleate, the cytosolic concentration and the mitochondrial concentration of ornithine was extremely low, while citrulline accumulated in the cytosol. The data indicate that the rate of citrulline synthesis is limited by the availability of mitochondrial ornithine.  相似文献   

8.
9.
10.
11.
Incubation of hepatocytes isolated from fasted rats with [14C]glucose for short periods of time showed that the initial stages of glycogen synthesis occur near the plasma membrane. Incubation with [14C]glucose followed by cold glucose demonstrated that glycogen synthesis is always active at the hepatocyte periphery and that previously synthesised glycogen moves towards the centre of the cell, while its place is filled by newly synthesised molecules. However, the reverse experiment, incubation with cold glucose before addition of [14C]glucose, showed that, as glycogen synthesis progresses, it also becomes gradually active in more internal sites of the hepatocyte. These results indicate a spatial order in the synthesis of hepatic glycogen.  相似文献   

12.
The mechanism of inhibition of pyruvate carboxylase, pyruvate dehydrogenase, and carbamyl phosphate synthetase induced by alpha-ketoisovalerate metabolism has been investigated in isolated rat hepatocytes incubated with lactate, pyruvate, ammonia, and ornithine as substrates. Half-maximum inhibitions of flux through each of these enzyme steps were obtained with 0.3 mM alpha-ketoisovalerate. The inhibition of pyruvate carboxylase flux by alpha-ketoisovalerate was largely reversed by oleate addition, but pyruvate dehydrogenase flux was inhibited further. Inhibition of flux through pyruvate carboxylase could be attributed mainly to the fall of its allosteric activator, acetyl-CoA, with some additional effect due to inhibition by methylmalonyl-CoA. Tissue acetyl-CoA levels decrease as a result of an inhibition of the active form of pyruvate dehydrogenase. Kinetic studies with the purified pig heart pyruvate dehydrogenase complex showed that methyl-malonyl-CoA, propionyl-CoA, and isobutyryl-CoA were inhibitory, the latter noncompetitive with CoASH with an apparent Ki of 90 microM. The observed inhibition of pyruvate dehydrogenase flux correlated with increases of the acetyl-CoA/CoASH and propionyl-CoA/CoASH ratios and isobutyryl-CoA levels, while increases of the mitochondrial NADH/NAD+ ratio explained differences between the effects of alpha-ketoisovalerate and propionate. Carbamyl phosphate synthetase I purified from rat liver was shown to be inhibited directly by methylmalonyl-CoA (apparent Ki of 5 mM). Inhibition of flux through carbamyl phosphate synthetase during alpha-ketoisovalerate metabolism could be attributed both to a direct inhibitory effect of methyl-malonyl-CoA and to a diminished activation by N-acetylglutamate. Direct effects of various acyl-CoA metabolites on these key enzymes may explain symptoms of hypoglycemia and hyperammonemia observed in patients with inherited disorders of organic acid metabolism.  相似文献   

13.
Uptake of ornithine by isolated hepatocytes and its distribution within the cell was investigated. Ornithine uptake was energy independent and exhibited a saturable and a nonsaturable component. The Km value of the saturable component was 1.3 mM. At an external ornithine concentration of 0.5 mM the rate of ornithine uptake was 127 +/- 19 nmol/g. Lysine inhibited ornithine uptake, indicating the existence of an ornithine transport system. It was concluded that ornithine transport can limit urea synthesis in the state of transition from a low ammonia to a high ammonia supply.  相似文献   

14.
There was a reversible inhibition of urea formation in the perfused rat liver caused by 2.25-27 mM lysine acting with a Ki of 10.8 mM in competition with ornithine. Urea formation in the presence of inhibitory concentrations of lysine ranged between 2.3 and 2.9 mumol X min-1 X (g, liver wet)-1 after addition of 1 mM of citrulline, argininosuccinate or arginine, whereas it amounted to 0.5 mumol X min-1 X (g, liver wet)-1 after addition of ornithine, showing that lysine inhibited the urea cycle between ornithine and citrulline. There was a rise of basal orotate formation of 0.03 +/- 0.02 mumol X h-1 X (g, liver wet)-1 towards a maximum of 0.6 +/- 0.04 mumol X h-1 X (g, liver wet)-1 after addition of 13.5 mM lysine, provided orotate utilization was blocked with allopurinol. Maximal rates of orotate formation were reached when ammonium concentrations exceeded 1 mM. We conclude that an inhibition of urea synthesis and a rise of orotate formation are caused by lysine in the isolated liver in vitro at rates observed in vivo. Hence, these metabolic alterations observed in the whole animal are most probably due to changes of liver metabolism.  相似文献   

15.
Nutritional influences on sexual maturation in the rat   总被引:3,自引:0,他引:3  
The effect of altered nutrition on sexual maturation may depend in part on the nature and timing of the dietary change. The data are conflicting as to whether rats undernourished before weaning but normally fed after weaning have delayed puberty, but such undernourished rats clearly weigh less at vaginal opening than do normally fed animals. Altered nutrition after weaning can change the timing of puberty, and in such cases the body weight at puberty of the animals given the modified diet is frequently abnormal. The factors regulating the age and weight at puberty of rats fed altered diets seem to include the degree of underfeeding, as reflected in the growth rate, and the composition of the diet. Undernourished immature male rats have low serum testosterone secondary to gonadotropin deficiency. Basal luteinizing hormone (LH) in these animals is either low or "inappropriately normal" relative to their hypoandrogenic state (low serum testosterone and sexual accessory gland weights), and serum LH increases after luteinizing hormone-releasing hormone (LHRH) or castration are normal or minimally reduced. Serum follicle-stimulating hormone (FSH) in undernourished rats is subnormal basally and after administration of LHRH, but not after castration, which suggests that the low basal serum FSH is due to inhibition of FSH output by a testicular factor. Spermatogenesis may be unaltered by dietary changes severe enough to cause hypoandrogenism, although very severe under-nutrition will impair sperm production.  相似文献   

16.
The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the prescence od bicarbonate, arsenite and ATP, propionate was converted to pyruvate and malate at the rates of 14.0 ± 2.9 and 2.8 ± 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 ± 2.9 nmol/mg protein. No accumulation of phosphoenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.  相似文献   

17.
Ornithine decarboxylase (ODC) activity is induced by protein-synthesis independent mechanisms in freshly isolated rat hepatocytes, incubated either without or with a mixture of amino acids in the incubation medium. Urea synthesis rates were two- to three-fold higher in those hepatocytes incubated in the presence of amino acids that in those lacking amino acids in the medium. Epidermal growth factor (EGF) delayed ODC induction, but only in the presence of amino acids. EGF significantly decreased ureagenesis when hepatocytes were incubated in the presence of amino acids and only endogenous substrates were available. No evidence of any link between ODC induction and urea synthesis was found.  相似文献   

18.
19.
20.
The cytochemical localization of glucose-6-phosphatase (G6Pase) and its biochemical quantification were studied in isolated and cultured adult rat parenchymal cells. Appropriate technical conditions were chosen to assume adequate ultrastructural preservation and retention of enzyme activity. Isolated hepatocytes separated by collagenase perfusion were shortly fixed in glutaraldehyde and entrapped in a pellet of fibrin. Frozen sections, 50 microns in thickness were incubated for cytochemical demonstration of G6Pase, in a slightly modified Wachstein-Meisel medium. Hepatocytes in culture, fixed for 1 min in glutaraldehyde, were impregnated in a 10% cryoprotective glycerol solution and quickly frozen in liquid nitrogen at -170 degrees C in order to induce penetration of the substrate. In these conditions, a homogeneous distribution of the enzyme was observed in both isolated and cultured cells. The cytochemical reaction appears continuous in the smooth and rough endoplasmic cisternae and in the nuclear envelope. Lead phosphate deposits, although evenly distributed, are reduced in intensity after 48 h culture. Biochemical determinations reveal the presence of a high specific enzymatic activity in isolated cells (108 nmolP/min/mg proteins), which decreases in culture, respectively to 70 and 50% of the original value, after 24 and 48 h culture. G6Pase induction by glucagon was obtained after 48 and 72 h in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号