首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the complete nucleotide sequence of a Drosophila alpha-amylase gene and its flanking regions, as determined by cDNA and genomic sequence analysis. This gene, unlike its mammalian counterparts, contains no introns. Nevertheless the insect and mammalian genes share extensive nucleotide similarity and the insect protein contains the four amino acid sequence blocks common to all alpha-amylases. In Drosophila melanogaster, there are two closely-linked copies of the alpha-amylase gene and they are divergently transcribed. In the 5'-regions of the two gene-copies we find high sequence divergence, yet the typical eukaryotic gene expression motifs have been maintained. The 5'-terminus of the alpha-amylase mRNA, as determined by primer extension analysis, maps to a characteristic Drosophila sequence motif. Additional conserved elements upstream of both genes may also be involved in amylase gene expression which is known to be under complex controls that include glucose repression.  相似文献   

2.
The nucleotide sequence of the gene for cyclodextrin glucanotransferase of alkalophilic Bacillus sp. strain 1011 was determined. The deduced amino acid sequence at the NH2-terminal side of the enzyme showed a high homology with the sequences of alpha-amylase in the three regions which constitutes the active centers of alpha-amylases.  相似文献   

3.
The nucleotide sequence of a thermophilic, liquefying alpha-amylase gene cloned from B. stearothermophilus was determined. The NH2-terminal amino acid sequence analysis of the B. stearothermophilus alpha-amylase confirmed that the reading frame of the gene consisted of 1,644 base pairs (548 amino acids). The B. stearothermophilus alpha-amylase had a signal sequence of 34 amino acids, which was cleaved at exactly the same site in E. coli. The mature enzyme contained two cysteine residues, which might play an important role in maintenance of a stable protein conformation. Comparison of the amino acid sequence inferred from the B. stearothermophilus alpha-amylase gene with those inferred from other bacterial liquefying alpha-amylase genes and with the amino acid sequences of eukaryotic alpha-amylases showed three homologous sequences in the enzymatically functional regions.  相似文献   

4.
5.
The nucleotide sequence of the alpha-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes EM1 suggested that the alpha-amylase is translated from mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature alpha-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 alpha-amylase with those from other bacterial and eucaryotic alpha-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca(2+)-binding site (consensus region I) of this Ca(2+)-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the alpha-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the beta-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains.  相似文献   

6.
E Satoh  T Uchimura  T Kudo    K Komagata 《Applied microbiology》1997,63(12):4941-4944
An intracellular alpha-amylase from Streptococcus bovis 148 was purified and characterized. The enzyme was induced by maltose and soluble starch and produced about 80% maltotriose from soluble starch. Maltopentaose was hydrolyzed to maltotriose and maltose and maltohexaose was hydrolyzed mainly to maltotriose by the enzyme. Maltotetraose, maltotriose, and maltose were not hydrolyzed. This intracellular enzyme was considered to be a maltotriose-producing enzyme. The enzymatic characteristics and hydrolysis product from soluble starch were different from those of the extracellular raw-starch-hydrolyzing alpha-amylase of strain 148. The deduced amino acid sequence of the intracellular alpha-amylase was similar to the sequences of the mature forms of extracellular liquefying alpha-amylases from Bacillus strains, although the intracellular alpha-amylase did not contain a signal peptide. No homology between the intracellular and extracellular alpha-amylases of S. bovis 148 was observed.  相似文献   

7.
The nucleotide sequence of the alpha-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes EM1 suggested that the alpha-amylase is translated from mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature alpha-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 alpha-amylase with those from other bacterial and eucaryotic alpha-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca(2+)-binding site (consensus region I) of this Ca(2+)-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the alpha-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the beta-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains.  相似文献   

8.
The gene coding for the heat-stable and pH-stable alpha-amylase of Bacillus licheniformis 584 (ATCC 27811) was cloned in Escherichia coli and the nucleotide sequence of a DNA fragment of 1,948 base pairs containing the entire amylase gene was determined. As inferred from the DNA sequence, the B. licheniformis alpha-amylase had a signal peptide of 29 amino acid residues and the mature enzyme comprised 483 amino acid residues, giving a molecular weight of 55,200. The amino acid sequence of B. licheniformis alpha-amylase showed 65.4% and 80.3% homology with those of heat-stable Bacillus stearothermophilus alpha-amylase and relatively heat-unstable Bacillus amyloliquefaciens alpha-amylase, respectively. Nevertheless, several regions of the alpha-amylases appeared to be clearly distinct from one another when their hydropathy profiles were compared.  相似文献   

9.
Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the alpha-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13,756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional alpha-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus alpha-amylases was observed. The inhibitor is more effective against insect alpha-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional alpha-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.  相似文献   

10.
The amino-acid sequence of alpha-amylase isolated from the pancreas of the ostrich, Struthio camelus was determined. The alpha-amylase (OPA) consisted of 497 amino acid residues with pyroglutamic acid at the N-terminus and no oligosaccharide. Amino acid identity between OPA and chicken, porcine and human pancreatic alpha-amylases individually, was found to be 88, 82 and 86%, respectively.  相似文献   

11.
The native and oxidized alpha-amylase inhibitor Z-2685, isolated from the culture medium of Streptomyces parvullus FH-1641, and its overlapping cleavage products were degraded by the automatic Edman technique. Digestion was carried out with pepsin, thermolysin and trypsin. The alpha-amylase inhibitor is a polypeptide consisting of 76 amino acids with a molecular mass of 8 129 Da. With the exception of methionine and lysine, all naturally occurring amino acids are present. It is interesting that identical regions exist, in particular the sequence Trp-Arg-Tyr common to all four known microbial inhibitor sequences. We believe that the side chains of these three amino acids are important for interacting with the alpha-amylase molecule. Computer alignment enabled us to show a possible binding region in the alpha-amylase molecule which might react with the inhibitors. Furthermore, homology exists to mammalian alpha-amylases. This result is explained by the assumption that the inhibitor evolved from a duplication of the original gene of the enzyme.  相似文献   

12.
Porcine pancreatic alpha-amylase (1,4-alpha-D-glucan glucanohydrolase EC 3.2.1.1), a single polypeptide chain, contains nine residues of methionine. Eight different fragments resulting from cleavage of this molecule by cyanogen bromide were characterized. The sequences of six of them have previously been reported. Two missing fragments, CN2 (82 residues) and CN3b1 (76 residues) were purified after breaking of the interpeptidic disulfide bridge and their complete sequence as well as that of the previously purified CN1 peptide (102 residues) are reported here. The location of the three disulfide bridges present in these peptides was determined. Ordering of the carboxymethylated cyanogen bromide fragments was carried out by pulse labeling the amylase chain in vivo. The complete sequence of the porcine pancreatic amylase chain (496 residues) and the location of its five disulfide bridges is presented. Comparison with human and mouse pancreatic and salivary alpha-amylases and with rat pancreatic amylase obtained from the corresponding cDNA nucleotidic sequences shows a high degree of homology between mammalian alpha-amylases.  相似文献   

13.
Mutations that cover the sequence of Bacillus stearothermophilus alpha-amylase were produced by an efficient in vitro enzymatic random mutagenesis method and the mutant alpha-amylases were expressed in Escherichia coli, which also secreted the product. Ninety-eight mutants were identified by sequencing and their enzyme activities were classified into three classes: wild-type, reduced or null. A molecular model of the enzyme was constructed using the coordinates of Takaamylase A and a consensus alignment of mammalian, plant, and bacterial alpha-amylases. The location of mutant amino acids on the model indicate that mutations which destroy or decrease the catalytic activity are particularly clustered: (i) around the active site and along the substrate-binding groove and (ii) in the interface between the central alpha/beta barrel and the C-terminal domain. Exposed loops are typically tolerant towards mutations.  相似文献   

14.
The nucleotide sequence of the gene for maltohexaose-producing amylase from an alkalophilic Bacillus sp. #707 was determined. Starting at an ATG initiation codon, an open reading frame was composed of 1554 bp (518 amino acids). The NH2-terminal portion encoded a 33 amino acid-long signal peptide. The deduced amino acid sequence of the extracellular mature enzyme was more than 60% homologous to those of the liquefying type alpha-amylases but not to those of the saccharifying type alpha-amylases. The sequence of its signal peptide was completely different from those of other alpha-amylases.  相似文献   

15.
Thermotoga maritima MSB8 has a chromosomal alpha-amylase gene, designated amyA, that is predicted to code for a 553-amino-acid preprotein with significant amino acid sequence similarity to the 4-alpha-glucanotransferase of the same strain and to alpha-amylase primary structures of other organisms. Upstream of the amylase gene, a divergently oriented open reading frame which can be translated into a polypeptide with similarity to the maltose-binding protein MalE of Escherichia coli was found. The T. maritima alpha-amylase appears to be the first known example of a lipoprotein alpha-amylase. This is in agreement with observations pointing to the membrane localization of this enzyme in T. maritima. Following the signal peptide, a 25-residue putative linker sequence rich in serine and threonine was found. The amylase gene was expressed in E. coli, and the recombinant enzyme was purified and characterized. The molecular mass of the recombinant enzyme was estimated at 61 kDa by denaturing gel electrophoresis (63 kDa by gel permeation chromatography). In a 10-min assay at the optimum pH of 7.0, the optimum temperature of amylase activity was 85 to 90 degrees C. Like the alpha-amylases of many other organisms, the activity of the T. maritima alpha-amylase was dependent on Ca2+. The final products of hydrolysis of soluble starch and amylose were mainly glucose and maltose. The extraordinarily high specific activity of the T. maritima alpha-amylase (about 5.6 x 10(3) U/mg of protein at 80 degrees C, pH 7, with amylose as the substrate) together with its extreme thermal stability makes this enzyme an interesting candidate for biotechnological applications in the starch processing industry.  相似文献   

16.
BACKGROUND: alpha-Amylases constitute a family of enzymes that catalyze the hydrolysis of alpha-D-(1,4)-glucan linkages in starch and related polysaccharides. The Amaranth alpha-amylase inhibitor (AAI) specifically inhibits alpha-amylases from insects, but not from mammalian sources. AAI is the smallest proteinaceous alpha-amylase inhibitor described so far and has no known homologs in the sequence databases. Its mode of inhibition of alpha-amylases was unknown until now. RESULTS: The crystal structure of yellow meal worm alpha-amylase (TMA) in complex with AAI was determined at 2.0 A resolution. The overall fold of AAI, its three-stranded twisted beta sheet and the topology of its disulfide bonds identify it as a knottin-like protein. The inhibitor binds into the active-site groove of TMA, blocking the central four sugar-binding subsites. Residues from two AAI segments target the active-site residues of TMA. A comparison of the TMA-AAI complex with a modeled complex between porcine pancreatic alpha-amylase (PPA) and AAI identified six hydrogen bonds that can be formed only in the TMA-AAI complex. CONCLUSIONS: The binding of AAI to TMA presents a new inhibition mode for alpha-amylases. Due to its unique specificity towards insect alpha-amylases, AAI might represent a valuable tool for protecting crop plants from predatory insects. The close structural homology between AAI and 'knottins' opens new perspectives for the engineering of various novel activities onto the small scaffold of this group of proteins.  相似文献   

17.
M Emori  M Takagi  B Maruo    K Yano 《Journal of bacteriology》1990,172(9):4901-4908
An alpha-amylase gene of Bacillus subtilis (natto) IAM1212 was cloned in a lambda EMBL3 bacteriophage vector, and the nucleotide sequence was determined. An open reading frame encoding the alpha-amylase (AMY1212) consists of 1,431 base pairs and contains 477 amino acid residues, which is the same in size as the alpha-amylase (AMY2633) of B. subtilis 2633, an alpha-amylase-hyperproducing strain, and smaller than that of B. subtilis 168, Marburg strain. The amino acid sequence of AMY1212 is different from that of AMY2633 at five residues. Enzymatic properties of these two alpha-amylases were examined by introducing the cloned genes into an alpha-amylase-deficient strain, B. subtilis M15. It was revealed that products of soluble starch hydrolyzed by AMY1212 are maltose and maltotriose, while those of AMY2633 are glucose and maltose. From the detailed analyses with oligosaccharides as substrates, it was concluded that the difference in hydrolysis products of the two similar alpha-amylases should be ascribed to the different activity hydrolyzing low-molecular-weight substrates, especially maltotriose; AMY1212 slowly hydrolyzes maltotetraose and cannot hydrolyze maltotriose, while AMY2633 efficiently hydrolyzes maltotetraose and maltotriose. Further analyses with chimeric alpha-amylase molecules constructed from the cloned genes revealed that only one amino acid substitution is responsible for the differences in hydrolysis products.  相似文献   

18.
Alkaline alpha-amylase (AmyK38) from the alkaliphilic Bacillus sp. strain KSM-K38 is a unique enzyme in that it is highly chelator-resistant and oxidatively stable [Hagihara, H., Igarashi, K., Hayashi, Y., Endo, K., Ikawa-Kitayama, K., Ozaki, K., Kawai, S. & Ito, S. (2001) Appl. Environ. Microbiol. 67, 1744-1750]. This enzyme was found to contain no Ca and require Na (or monovalent cations) for manifestation of activity. The nucleotide sequence of the gene for the novel enzyme was determined, and it harbored an ORF of 1503 bp encoding the enzyme of 501 amino acids, including a 21-amino-acid signal peptide. The deduced amino-acid sequence of the mature enzyme (55 097 Da) showed moderate homology to those of alpha-amylases from Bacillus licheniformis, Bacillus stearothermophilus and Bacillus amyloliquefaciens, with approximately 63% identity. A methionine residue, which is conserved and susceptible to chemical oxidation, was replaced with leucine in AmyK38. Moreover, many conserved residues that are crucial ligands for Ca were replaced with other amino acids, thereby leading to loss of the Ca coordination geometries. By building a molecular model, we showed the calcium-independent, oxidatively stable active-site topology and structural integrity of AmyK38.  相似文献   

19.
Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase.  相似文献   

20.
Zabrotes subfasciatus is a devastating starch-dependent storage bean pest. In this study, we attempted to identify novel alpha-amylase inhibitors from wild bean seeds, with efficiency toward pest alpha-amylases. An inhibitor named Phaseolus vulgaris chitinolytic alpha-amylase inhibitor (PvCAI) was purified and mass spectrometry analyses showed a protein with 33330 Da with the ability to form dimers. Purified PvCAI showed significant inhibitory activity against larval Z. subfasciatus alpha-amylases with no activity against mammalian enzymes. N-terminal sequence analyses showed an unexpected high identity to plant chitinases from the glycoside hydrolase family 18. Furthermore, their chitinolytic activity was also detected. Our data provides compelling evidence that PvCAI also possessed chitinolytic activity, indicating the emergence of a novel alpha-amylase inhibitor class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号