首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three group I mGluR antagonists CPCCOEt, LY367385 and BAY36-7620, were analyzed for their effect on cell surface expression of metabotropic glutamate receptor 1a and 1b. All three antagonists inhibited glutamate-induced internalization of mGluR1a and mGluR1b. However, when added alone, either LY367385 or BAY36-7620 increased the cell surface expression of mGluR1a but not mGluR1b. Both LY367385 and BAY36-7620 displayed inverse agonist activity as judged by their ability to inhibit basal inositol phosphate accumulation in cells expressing the constitutively active mGluR1a. Interestingly, mGluR1a but not mGluR1b was constitutively internalized in HEK293 cells and both LY367385 and BAY36-7620 inhibited the constitutive internalization of this splice variant. Furthermore, coexpression of dominant negative mutant constructs of arrestin-2 [arrestin-2-(319-418)] or Eps15 [Eps15(E Delta 95-295)] increased cell surface expression of mGluR1a and blocked constitutive receptor internalization. In the presence of these dominant negative mutants, incubation of cells with LY367385 and BAY36-7620 produced no further increase in cell surface expression of mGluR1a. Taken together, these results suggest that the constitutive activity of mGluR1a triggers the internalization of the receptor through an arrestin- and clathrin-dependent pathway, and that inverse agonists increase the cell surface expression of mGluR1a by promoting an inactive form of mGluR1a, which does not undergo constitutive internalization.  相似文献   

2.
To investigate the role of the intracellular C-terminal tail of the rat metabotropic glutamate receptor 1a (mGlu1a) in receptor regulation, we constructed three C-terminal tail deletion mutants (Arg847stop, DM-I; Arg868stop, DM-II; Val893stop, DM-III). Quantification of glutamate-induced internalization provided by ELISA indicated that DM-III, like the wild-type mGlu1a, underwent rapid internalization whilst internalization of DM-I and DM-II was impaired. The selective inhibitor of protein kinase C (PKC), GF109203X, which significantly reduced glutamate-induced mGlu1a internalization, had no effect on the internalization of DM-I, DM-II, or DM-III. In addition activation by carbachol of endogenously expressed M1 muscarinic acetylcholine receptors, which induces PKC- and Ca2+-calmodulin-dependent protein kinase II-dependent internalization of mGlu1a, produced negligible internalization of the deletion mutants. Co-expression of a dominant negative mutant form of G protein-coupled receptor kinase 2 (DNM-GRK2; Lys220Arg) significantly attenuated glutamate-induced internalization of mGlu1a and DM-III, whilst internalization of DM-I and DM-II was not significantly affected. The glutamate-induced internalization of mGlu1a and DM-III, but not of DM-I or DM-II, was inhibited by expression of DNM-arrestin [arrestin-2(319-418)]. In addition glutamate-induced rapid translocation of arrestin-2-Green Fluorescent Protein (arr-2-GFP) from cytosol to membrane was only observed in cells expressing mGlu1a or DM-III. Functionally, in cells expressing mGlu1a, glutamate-stimulated inositol phosphate accumulation was increased in the presence of PKC inhibition, but so too was that in cells expressing DM-II and DM-III. Together these results indicate that different PKC mechanisms regulate the desensitization and internalization of mGlu1a. Furthermore, PKC regulation of mGlu1a internalization requires the distal C terminus of the receptor (Ser894-Leu1199), whilst in contrast glutamate-stimulated GRK- and arrestin-dependent regulation of this receptor depends on a region of 25 amino acids (Ser869-Val893) in the proximal C-terminal tail.  相似文献   

3.
Histamine H2 receptor (H2R) is a member of G protein-coupled receptor family. Agonist stimulation of H2R results in several cellular events including activation of adenylate cyclase and phospholipase C, desensitization of the receptor, activation of extracellular signal-regulated kinases ERK1/2, and receptor endocytosis. In this study, we identified a GTPase dynamin as a binding partner of H2R. Dynamin could associate with H2R both in vitro and in vivo. Functional analyses using dominant-negative form of dynamin (K44E-dynamin) revealed that cAMP production and the following H2R desensitization are independent of dynamin. However, the agonist-induced H2R internalization was inhibited by co-expression of K44E-dynamin. Furthermore, activation of extracellular-signal regulated kinases ERK1/2 in response to dimaprit, an H2R agonist, was attenuated by K44E-dynamin. Although H2R with truncation of 51 amino acids at its carboxy-terminus did not internalize after agonist stimulation, it still activated ERK1/2, but the degree of this activation was less than that of the wild-type receptor. Finally, K44E dynamin did not affect ERK1/2 activation induced by internalization-deficient H2R. These results suggest that the agonist-induced H2R internalization and ERK1/2 activation are partially dynamin-dependent. Furthermore, ERK1/2 activation via H2R is likely dependent of the endocytotic process rather than dynamin itself.  相似文献   

4.
The signaling property of metabotropic glutamate receptor 1alpha (mGlu1alpha) is different from that of short-form splice variants. This could be caused by the exposure of a cluster of positively charged amino acid residues, RRKK, in the proximal C-tail which is thought to be masked by the long C-tail of mGlu1alpha. We found that the RRKK residues, when exposed, attenuate Gq coupling and decrease the basal activity and the surface expression of mGlu1, in agreement with previous results. Moreover, these residues abolish the Gi/o coupling of mGlu1, but do not affect glutamate-induced dimeric rearrangement and protein kinase A-dependent modulation of mGlu1. These results suggest that the RRKK residues do not inhibit the conformational change upon glutamate binding and protein accessibility to the intracellular loops where G-protein coupling occurs, but rather act as an inhibitory domain against G-protein coupling in a different manner depending on the type of G protein.  相似文献   

5.
Previously, we reported a transgenic mouse line, TG-3, that develops spontaneous melanoma with 100% penetrance. We demonstrated that ectopic expression of Grm1 in melanocytes was sufficient to induce melanoma in vivo. In this present study, the transforming properties of Grm1 in two cultured immortalized melanocytes were investigated. We showed that, in contrast to parental melanocytes, these Grm1-clones have lost their requirement of TPA supplement for proliferation and have acquired the ability to form colonies in semi-solid medium. Xenografts of these cells formed robust tumors in both immunodeficient nude and syngeneic mice with a short latency (3-5 days). The malignancy of these cells was demonstrated by angiogenesis and invasion to the muscle and the intestine. The requirement of Grm1 expression for the maintenance of transformation was demonstrated by an inducible siRNA system. Induction of expression of siRNA for Grm1 reduced the number of proliferating/viable cells in vitro and suppressed in vivo xenografted tumor growth in comparison with control. Taken together, these results showed that expression of exogeneously introduced Grm1 is sufficient to induce full transformation of immortalized melanocytes.  相似文献   

6.
The Group C G protein-coupled receptors include the metabotropic glutamate receptors (mGluRs), the GABAB receptor, the calcium sensor and several taste receptors, most of which are obligate dimers, indeed recent work has shown that dimerization is necessary for the activation of these receptors. Consequently factors that regulate their ability to homo- or heterodimerize are important. The Group 1 mGluRs include mGluR1 and mGluR5 both of which have splice variants with altered C-termini. In this study, we show that mGluR1b is a dimer and that it does not efficiently heterodimerize with mGluR1a, unlike the two splice variants of mGluR5 that can heterodimerize. Mutation of a positively charged motif (RRKK) at the C-terminus of the mGluR1b tail permits mGluR1b to heterodimerize with mGluR1a. Co-expression of mGluR1a and mGluR1b in COS-7 cells results in the accumulation of mGluR1b in intracellular inclusions that do not contain mGluR1a. This behaviour is mimicked by a chimera of the lymphocyte antigen CD2 with the C-terminus of mGluR1b (pCD1b) and depends on the presence of the RRKK motif. These accumulations are immunoreactive for endoplasmic reticulum (ER) markers, but not Golgi and ERGIC markers. This segregation of mGluR1b from other ER proteins may contribute to its failure to dimerize with mGluR1a.  相似文献   

7.
8.
G protein-coupled receptors have a common structural motif of seven transmembrane alpha-helices and are classified into different families showing no sequence similarity. Extensive studies have been conducted on the structure-function relationship in family 1 receptors, but those in other families have not been well studied. In this study, to investigate the molecular basis leading to the G protein activation by metabotropic glutamate receptor (mGluR), the member of family 3, we searched for the amino acid residues responsible for the G protein activation in the second cytoplasmic loop, which was thought to be the main G protein binding region. Analyses of the systematical mutations of Gi/Go-coupled mGluR8 revealed the presence of a constitutively active mutation in the C-terminal region of the second loop. The corresponding mutation in the second loop of Gq-coupled mGluR1 also exhibited high agonist-independent activity. These results indicate that there is a common constitutive active mutation site regardless of mGluR subtypes, suggesting that the structural change of the junction between the second cytoplasmic loop and helix IV is strongly linked to the formation of the active state.  相似文献   

9.
Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors that are distributed throughout the brain and play important roles in regulation of synaptic efficacy. Some studies report that mGluRs heterologously expressed in nonneuronal cells are sensitive not only to glutamate but also to extracellular Ca2+ (Ca o 2+ ). We studied the Ca o 2+ -sensitivity of native mGluRs in mammalian central neurons. In cerebellar Purkinje cells that naturally express type-1 mGluR (mGluR1), physiological levels of Ca o 2+ (around 2 mM) activate mGluR1-mediated intracellular Ca2+ mobilization. The activation of the native mGluR1 response to Ca o 2+ appears to be slower than that to glutamate. Ca o 2+ (2 mM) also augments glutamate analog-evoked, native mGluR1-mediated inward cation current and intracellular Ca o 2+ mobilization. Detailed analysis of this effect suggests that Ca o 2+ modulates the glutamate responsiveness of native and heterologously expressed mGluR1s in different manners. These findings suggest that Ca o 2+ may enhance the basal level and glutamate responsiveness of neuronal mGluR signaling in vivo.  相似文献   

10.
We used a proteomic approach to identify novel proteins that may regulate metabotropic glutamate receptor 5 (mGluR5) responses by direct or indirect protein interactions. This approach does not rely on the heterologous expression of proteins and offers the advantage of identifying protein interactions in a native environment. The mGluR5 protein was immunoprecipitated from rat brain lysates; co-immunoprecipitating proteins were analyzed by mass spectrometry and identified peptides were matched to protein databases to determine the correlating parent proteins. This proteomic approach revealed the interaction of mGluR5 with known regulatory proteins, as well as novel proteins that reflect previously unidentified molecular constituents of the mGluR5-signaling complex. Immunoblot analysis confirmed the interaction of high confidence proteins, such as phosphofurin acidic cluster sorting protein 1, microtubule-associated protein 2a and dynamin 1, as mGluR5-interacting proteins. These studies show that a proteomic approach can be used to identify candidate interacting proteins. This approach may be particularly useful for neurobiology applications where distinct protein interactions within a signaling complex can dramatically alter the outcome of the response to neurotransmitter release, or the disruption of normal protein interactions can lead to severe neurological and psychiatric disorders.  相似文献   

11.
We evaluated the possible functional expression of metabotropic glutamate receptors (mGluRs) by neural progenitors from embryonic mouse neocortex. Constitutive expression was seen with group I, II, and III mGluRs in undifferentiated cells and neurospheres formed by clustered cells during culture with epidermal growth factor. The group III mGluR agonist, l -2-amino-4-phosphonobutyrate, drastically reduced proliferation activity at 1–100 μM without inducing cell death, with group I and group II mGluR agonists being ineffective, in these neurospheres. Both forskolin and a group III mGluR antagonist significantly increased the proliferation alone, but significantly prevented the suppression by l -2-amino-4-phosphonobutyrate. Activation of group III mGluR significantly decreased mRNA expression of the cell cycle regulator cyclinD1, in addition to inhibiting the transactivation mediated by cAMP of cyclinD1 gene in the pluripotent P19 progenitor cells. Prior activation of group III mGluR led to a significant decrease in the number of cells immunoreactive for a neuronal marker, with an increase in that for an astroglial marker irrespective of differentiation inducers. These results suggest that group III mGluR may be functionally expressed to suppress self-renewal capacity through a mechanism related to cAMP formation with promotion of subsequent differentiation into astroglial lineage in neural progenitors.  相似文献   

12.
G protein-coupled receptors are classified into several families on the basis of their amino acid sequences and the members of the same family exhibit sequence similarity but those of different families do not. In family 1 GPCRs such as rhodopsin and adrenergic receptor, extensive studies have revealed the stimulus-dependent conformational change of the receptor: the rearrangement of transmembrane helices III and VI is essential for G protein activation. In contrast, in family 3 GPCRs such as metabotropic glutamate receptor (mGluR), the inter-protomer relocation upon ligand binding has been observed but there is much less information about the structural changes of the transmsmbrane helices and the cytoplasmic domains. Here we identified constitutively active mutation sites at the cytoplasmic borders of helices II and IV of mGluR8 and successfully inhibited the G protein activation ability by engineering disulfide cross-linking between these cytoplasmic regions. The analysis of all possible single substitution mutants of these residues revealed that some steric interactions around these sites would be important to keep the receptor protein inactive. These results provided the model that the conformational changes at the cytoplasmic ends of helices II and IV of mGluR are involved in the efficient G protein coupling.  相似文献   

13.
The Group I metabotropic glutamate receptor (mGlu1) plays an important role in neuromodulation, development, and synaptic plasticity. Using immunocytochemistry, subcellular fractionation, and western blot analysis, the present study shows that mGlu1a receptors are present on nuclear membranes in stably transfected human embryonic kidney 293 (HEK293) cells as well as being endogenously expressed on rat cortical nuclei. Both glutamate and the group I agonist, quisqualate, directly activate nuclear mGlu1 receptors leading to a characteristic oscillatory pattern of calcium flux in isolated HEK nuclei and a slow rise to plateau in isolated cortical nuclei. In either case calcium responses could be terminated upon application of the mGlu1-selective antagonist, 7-(hydroxyamino)cyclopropa[b]chromen-1a-carboxylate ethyl ester. Responses could also be blocked by ryanodine and inositol 1,4,5-triphosphate receptor inhibitors, demonstrating the involvement of these calcium channels. Agonist activation of intracellular receptors was driven by Na(+)-dependent and -independent processes in nuclei isolated from either HEK or cortical neurons. Finally, mGlu1 nuclear receptors were dramatically up-regulated in the course of post-natal development. Therefore, like the other Group I receptor, mGlu5, mGlu1 can function as an intracellular receptor, suggesting a more encompassing role for nuclear G protein-coupled receptors and downstream signaling elements in the regulation of nuclear events.  相似文献   

14.
A number of studies suggest that OLGs (oligodendrocytes), the myelinating cells of the central nervous system, are also a source of trophic molecules, such as neurotrophins that may influence survival of proximate neurons. What is less clear is how the release of these molecules may be regulated. The present study investigated the effects of BDNF (brain-derived neurotrophic factor) derived from cortical OLGs on proximate neurons, as well as regulatory mechanisms mediating BDNF release. Initial work determined that BDNF derived from cortical OLGs increased the numbers of VGLUT1 (vesicular glutamate transporter 1)-positive glutamatergic cortical neurons. Furthermore, glutamate acting through metabotropic, and not AMPA/kainate or NMDA (N-methyl-d-aspartate), receptors increased BDNF release. The PLC (phospholipase C) pathway is a key mediator of metabotropic actions to release BDNF in astrocytes and neurons. Treatment of OLGs with the PLC activator m-3M3FBS [N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide] induced robust release of BDNF. Moreover, release elicited by the metabotropic receptor agonist ACPD [trans-(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid] was inhibited by the PLC antagonist U73122, the IP3 (inositol triphosphate 3) receptor inhibitor 2-APB (2-aminoethoxydiphenylborane) and the intracellular calcium chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid tetrakis(acetoxymethyl ester)]. Taken together, these results suggest that OLG lineage cells release BDNF, a molecule trophic for proximate neurons. BDNF release is regulated by glutamate acting through mGluRs (metabotropic glutamate receptors) and the PLC pathway. Thus glutamate and BDNF may be molecules that support neuron–OLG interactions in the cortex.  相似文献   

15.
It is well known that prolonged exposure to morphine results in tolerance to morphine-induced antinociception. In the present study, we found that either intrathecal (i.t.) or subcutaneous (s.c.) injection of the selective metabotropic glutamate receptor 5 (mGluR5) antagonist, methyl-6-(phenylethynyl)-pyridine hydrochloride (MPEP), attenuated the development of tolerance to morphine-induced antinociception. Using the receptor binding assay, we found here that the number of mGluR5 in the mouse spinal cord was significantly increased by repeated treatment with morphine. Furthermore, repeated treatment with morphine produced a significant increase in the level of mGluR5 immunoreactivity in the dorsal horn of the mouse spinal cord. Double-labeling experiments showed that the increased mGluR5 was predominantly expressed in the neurons and sparsely expressed in the processes of astrocytes following repeated treatment with morphine. Consistent with these results, the response of Ca2+ to the selective group I mGluR agonist, 3,5-dihydroxyphenylglycine (DHPG), in cultured spinal cord neurons was potently enhanced by 3 days of in vitro treatment with morphine. These findings support the idea that the increased mGluR5 following repeated treatment with morphine leads to enhanced neuronal excitability and synaptic transmission in the dorsal horn of the spinal cord and, in turn, suppresses the morphine-induced antinociception in mice.  相似文献   

16.
Oligodendrocytes (OLs) are responsible for axon myelination and are the principal cells targeted in preterm white matter injury. The cellular and molecular mechanisms involved in white matter development and immature OL injury are incompletely understood. Metabotropic glutamate receptors (mGluRs) modulate neuronal development and survival, and have recently been identified in oligodendrocyte progenitor cells (OPCs). Using the highly homogeneous CG-4 OPC line and O4 marker-immunoselected primary OLs, we established the differentiation stage-specific expression profile of mGluR3 and mGluR5 mRNAs and proteins in the oligodendroglial lineage and type-2-astrocytes (ASTs). Our quantitative analysis indicated no changes in mGluR3, but a significant down-regulation of mGluR5a mRNA and protein expression during differentiation of OPCs into OLs or ASTs. The down-regulation of mGluR5a had functional consequences, with significantly fewer OLs and ASTs than OPCs responding to the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine with intracellular Ca(2+) concentration oscillations. Neither stimulation nor inhibition of mGluR3 or mGluR5 altered OPC migration, suggesting that these receptors do not play prominent roles in the regulation of OPC motility. The activation of mGluR5 completely protected OPCs and substantially reduced staurosporine-induced apoptosis in OLs. This suggests that the down-regulation of mGluR5 in premyelinating OLs is likely to contribute to their increased vulnerability, and that the targeting of mGluR5 may be a potential therapeutic strategy for future development.  相似文献   

17.
Regulated trafficking of neurotransmitter receptors is critical to normal neurodevelopment and neuronal signaling. Group I mGluRs (mGluR1/5 and their splice variants) are G protein-coupled receptors enriched at excitatory synapses, where they serve to modulate glutamatergic transmission. The mGluR1 splice variants mGluR1a and mGluR1b are broadly expressed in the central nervous system and differ in their signaling and trafficking properties. Several proteins have been identified that selectively interact with mGluR1a and participate in receptor trafficking but no proteins interacting with mGluR1b have thus far been reported. We have used a proteomic strategy to isolate and identify proteins that co-purify with mGluR1b in Madin-Darby Canine Kidney (MDCK) cells, an established model system for trafficking studies. Here, we report the identification of 10 novel candidate mGluR1b-interacting proteins. Several of the identified proteins are structural components of the cell cytoskeleton, while others serve as cytoskeleton-associated adaptors and motors or endoplasmic reticulum-associated chaperones. Findings from this work will help unravel the complex cellular mechanisms underlying mGluR trafficking under physiological and pathological conditions.  相似文献   

18.
Agonists stimulate cannabinoid 1 receptor (CB1R) internalization. Previous work suggests that the extreme carboxy-terminus of the receptor regulates this internalization – likely through the phosphorylation of serines and threonines clustered within this region. While truncation of the carboxy-terminus (V460Z CB1) and consequent removal of these putative phosphorylation sites prevents endocytosis in AtT20 cells, the residues necessary for CB1R internalization remain elusive. To determine the structural requirements for internalization, we evaluated endocytosis of carboxy-terminal mutant CB1Rs stably expressed in HEK293 cells. In contrast to AtT20 cells, V460Z CB1R expressed in HEK293 cells internalized to the same extent and with similar kinetics as the wild-type receptor. However, mutation of serine and/or threonine residues within the extreme carboxy-terminal attenuated internalization when these receptors were expressed in HEK293 cells. These results establish that the extreme carboxy-terminal phosphorylation sites are not required for internalization of truncated receptors, but are required for internalization of full-length receptors in HEK293 cells. Analysis of β-arrestin-2 recruitment to mutant CB1R suggests that putative carboxy-terminal phosphorylation sites mediate β-arrestin-2 translocation. This study indicates that the local cellular environment affects the structural determinants of CB1R internalization. Additionally, phosphorylation likely regulates the internalization of (full-length) CB1Rs.  相似文献   

19.
Metabotropic receptors may couple to different G proteins in different cells or perhaps even in different regions of the same cell. To date, direct studies of group II and group III metabotropic glutamate receptors' (mGluRs) relationships to second messenger cascades have reported negative coupling of these receptors to cyclic AMP (cAMP) levels in neurons, astrocytes and transfected cells. In the present study, we found that the peptide neurotransmitter N-acetylaspartylglutamate (NAAG), an mGluR3-selective agonist, decreased sodium nitroprusside (SNP)-stimulated cyclic GMP (cGMP) levels in cerebellar granule cells and cerebellar astrocytes. The mGluR3 and group II agonists FN6 and LY354740 had similar effects on cGMP levels. The mGluR3 and group II antagonists beta-NAAG and LY341495 blocked these actions. Treatment with pertussis toxin inhibited the effects of NAAG on SNP-stimulated cGMP levels in rat cerebellar astrocytes but not in cerebellar neurons. These data support the conclusion that mGluR3 is also coupled to cGMP levels and that this mGluR3-induced reduction of cGMP levels is mediated by different G proteins in cerebellar astrocytes and neurons. We previously reported that this receptor is coupled to a cAMP cascade via a pertussis toxin-sensitive G protein in cerebellar neurons, astrocytes and transfected cells. Taken together with the present data, we propose that mGluR3 is coupled to two different G proteins in granule cell neurons. These data greatly expand knowledge of the range of second messenger cascades induced by mGluR3, and have implications for clinical conditions affected by NAAG and other group II mGluR agonists.  相似文献   

20.
The cerebellum is a brain structure involved in the coordination, control and learning of movements, and elucidation of its function is an important issue. Japanese scholars have made seminal contributions in this field of neuroscience. Electrophysiological studies of the cerebellum have a long history in Japan since the pioneering works by Ito and Sasaki. Elucidation of the basic circuit diagram of the cerebellum in the 1960s was followed by the construction of cerebellar network theories and finding of their neural correlates in the 1970s. A theoretically predicted synaptic plasticity, long-term depression (LTD) at parallel fibre to Purkinje cell synapse, was demonstrated experimentally in 1982 by Ito and co-workers. Since then, Japanese neuroscientists from various disciplines participated in this field and have made major contributions to elucidate molecular mechanisms underlying LTD. An important pathway for LTD induction is type-1 metabotropic glutamate receptor (mGluR1) and its downstream signal transduction in Purkinje cells. Sugiyama and co-workers demonstrated the presence of mGluRs and Nakanishi and his pupils identified the molecular structures and functions of the mGluR family. Moreover, the authors contributed to the discovery and elucidation of several novel functions of mGluR1 in cerebellar Purkinje cells. mGluR1 turned out to be crucial for the release of endocannabinoid from Purkinje cells and the resultant retrograde suppression of transmitter release. It was also found that mGluR1 and its downstream signal transduction in Purkinje cells are indispensable for the elimination of redundant synapses during post-natal cerebellar development. This article overviews the seminal works by Japanese neuroscientists, focusing on mGluR1 signalling in cerebellar Purkinje cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号