首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the mechanisms of hepatic HDL formation, we investigated the roles of ABCA1, ABCG1, and SR-BI in nascent HDL formation in primary hepatocytes isolated from mice deficient in ABCA1, ABCG1, or SR-BI and from wild-type (WT) mice. Under basal conditions, in WT hepatocytes, cholesterol efflux to exogenous apoA-I was accompanied by conversion of apoA-I to HDL-sized particles. LXR activation by T0901317 markedly enhanced the formation of larger HDL-sized particles as well as cellular cholesterol efflux to apoA-I. Glyburide treatment completely abolished the formation of 7.4 nm diameter and greater particles but led to the formation of novel 7.2 nm-sized particles. However, cells lacking ABCA1 failed to form such particles. ABCG1-deficient cells showed similar capacity to efflux cholesterol to apoA-I and to form nascent HDL particles compared with WT cells. Cholesterol efflux to apoA-I and nascent HDL formation were slightly but significantly enhanced in SR-BI-deficient cells compared with WT cells under basal but not LXR activated conditions. As in WT but not in ABCA1-deficient hepatocytes, 7.2 nm-sized particles generated by glyburide treatment were also detected in ABCG1-deficient and SR-BI-deficient hepatocytes. Our data indicate that hepatic nascent HDL formation is highly dependent on ABCA1 but not on ABCG1 or SR-BI.  相似文献   

2.
Regulation of gene expression of ATP-binding cassette transporter (ABC)A1 and ABCG1 by liver X receptor/retinoid X receptor (LXR/RXR) ligands was investigated in the human intestinal cell line CaCo-2. Neither the RXR ligand, 9-cis retinoic acid, nor the natural LXR ligand 22-hydroxycholesterol alone altered ABCA1 mRNA levels. When added together, ABCA1 and ABCG1 mRNA levels were increased 3- and 7-fold, respectively. T0901317, a synthetic non-sterol LXR agonist, increased ABCA1 and ABCG1 gene expression 11- and 6-fold, respectively. ABCA1 mass was increased by LXR/RXR activation. T0901317 or 9-cis retinoic acid and 22-hydroxycholesterol increased cholesterol efflux from basolateral but not apical membranes. Cholesterol efflux was increased by the LXR/RXR ligands to apolipoprotein (apo)A-I or HDL but not to taurocholate/phosphatidylcholine micelles. Actinomycin D prevented the increase in ABCA1 and ABCG1 mRNA levels and the increase in cholesterol efflux induced by the ligands. Glyburide, an inhibitor of ABCA1 activity, attenuated the increase in basolateral cholesterol efflux induced by T0901317. LXR/RXR activation decreased the esterification and secretion of cholesterol esters derived from plasma membranes. Thus, in CaCo-2 cells, LXR/RXR activation increases gene expression of ABCA1 and ABCG1 and the basolateral efflux of cholesterol, suggesting that ABCA1 plays an important role in intestinal HDL production and cholesterol absorption.  相似文献   

3.
Gestational diabetes mellitus (GDM) is associated with excessive oxidative stress which may affect placental vascular function. Cholesterol homeostasis is crucial for maintaining fetoplacental endothelial function. We aimed to investigate whether and how GDM affects cholesterol metabolism in human fetoplacental endothelial cells (HPEC). HPEC were isolated from fetal term placental arterial vessels of GDM or control subjects. Cellular reactive oxygen species (ROS) were detected by H2DCFDA fluorescent dye. Oxysterols were quantified by gas chromatography–mass spectrometry analysis. Genes and proteins involved in cholesterol homeostasis were detected by real-time PCR and immunoblotting, respectively. Cholesterol efflux was determined from [3H]-cholesterol labeled HPEC and [14C]-acetate was used as cholesterol precursor to measure cholesterol biosynthesis and esterification. We detected enhanced formation of ROS and of specific, ROS-derived oxysterols in HPEC isolated from GDM versus control pregnancies. ROS-generated oxysterols were simultaneously elevated in cord blood of GDM neonates. Liver-X receptor activation in control HPEC by synthetic agonist TO901319, 7-ketocholesterol, or 7β-hydroxycholesterol upregulated ATP-binding cassette transporters (ABC)A1 and ABCG1 expression, accompanied by increased cellular cholesterol efflux. Upregulation of ABCA1 and ABCG1 and increased cholesterol release to apoA-I and HDL3 (78?±?17%, 40?±?9%, respectively) were also observed in GDM versus control HPEC. The LXR antagonist GGPP reversed ABCA1 and ABCG1 upregulation and reduced the increased cholesterol efflux in GDM HPEC. Similar total cellular cholesterol levels were detected in control and GDM HPEC, while GDM enhanced cholesterol biosynthesis along with upregulated 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and sterol O-acyltransferase 1 (SOAT1) mRNA and protein levels. Our results suggest that in GDM cellular cholesterol homeostasis in the fetoplacental endothelium is modulated via LXR activation and helps to maintain its proper functionality.  相似文献   

4.
Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1   总被引:11,自引:0,他引:11  
Plasma levels of high-density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) are inversely correlated with the risk of cardiovascular disease. One major atheroprotective mechanism of HDL and apoA-I is their role in reverse cholesterol transport, i.e., the transport of excess cholesterol from foam cells to the liver for secretion. The ATP-binding cassette transporters ABCA1 and ABCG1 play a pivotal role in this process by effluxing lipids from foam cells to apoA-I and HDL, respectively. In the liver, ABCA1 activity is one rate-limiting step in the formation of HDL. In macrophages, ABCA1 and ABCG1 prevent the excessive accumulation of lipids and thereby protect the arteries from developing atherosclerotic lesions. However, the mechanisms by which ABCA1 and ABCG1 mediate lipid removal are still unclear. Particularly, three questions remain controversial and are discussed in this review: (1) Do apoA-I and HDL directly interact with ABCA1 and ABCG1, respectively? (2) Does cholesterol efflux involve retroendocytosis of apoA-I or HDL? (3) Which lipids are directly transported by ABCA1 and ABCG1?  相似文献   

5.
The ATP-binding cassette transporters ABCA1 and ABCG1 as well as scavenger receptor BI (SR-BI) mediate the efflux of lipids from macrophages to apolipoprotein A-I (apoA-I) and high density lipoproteins (HDL). We used RNA interference in RAW264.7 macrophages to study the interactions of ABCA1, ABCG1, and SR-BI with lipid-free apoA-I, native and reconstituted HDL with apoA-I:phosphatidylcholine ratios of either 1:40 (rHDL(1:40)) or 1:100 (rHDL(1:100)). Knock-down of ABCA1 inhibits the cellular binding at 4 degrees C of lipid-free apoA-I but not of HDL whereas suppression of ABCG1 or SR-BI reduces the binding of HDL but not lipid-free apoA-I. The degree of lipidation influences the interactions of rHDL with ABCG1 and SR-BI. Knock-down of ABCG1 inhibits more effectively the binding and cholesterol efflux capacities of lipid-poorer rHDL(1:40) whereas knock-down of SR-BI has a more profound effect on the binding and cholesterol efflux capacities of lipid-richer rHDL(1:100). Moreover, knock-down of ABCG1 but not SR-BI interferes with the association of lipid-free apoA-I during prolonged incubation at 37 degrees C. Finally, knock-down of ABCG1 inhibits the binding of initially lipid-free apoA-I which has been preconditioned by cells with high ABCA1 activity. The gained ability of initially lipid-free apoA-I to interact with ABCG1 is accompanied by its shift from electrophoretic pre-beta- to alpha-mobility. Taken together, these data suggest that the interaction of lipid-free apoA-I with ABCA1 generates a particle that immediately interacts with ABCG1 but not with SR-BI. Furthermore, the degree of lipidation influences the interaction of HDL with ABCG1 or SR-BI.  相似文献   

6.
7.
Impaired cholesterol/lipoprotein metabolism is linked to neurodegenerative diseases such as Alzheimer's disease (AD). Cerebral cholesterol homeostasis is maintained by the highly efficient blood-brain barrier (BBB) and flux of the oxysterols 24(S)-hydroxycholesterol and 27-hydroxycholesterol, potent liver-X-receptor (LXR) activators. HDL and their apolipoproteins are crucial for cerebral lipid transfer, and loss of ATP binding cassette transporters (ABC)G1 and G4 results in toxic accumulation of oxysterols in the brain. The HDL-associated apolipoprotein (apo)M is positively correlated with pre-β HDL formation in plasma; its presence and function in the brain was thus far unknown. Using an in vitro model of the BBB, we examined expression, regulation, and functions of ABCG1, ABCG4, and apoM in primary porcine brain capillary endothelial cells (pBCEC). RT Q-PCR analyses and immunoblotting revealed that in addition to ABCA1 and scavenger receptor, class B, type I (SR-BI), pBCEC express high levels of ABCG1, which was up-regulated by LXR activation. Immunofluorescent staining, site-specific biotinylation and immunoprecipitation revealed that ABCG1 is localized both to early and late endosomes and on apical and basolateral plasma membranes. Using siRNA interference to silence ABCG1 (by 50%) reduced HDL-mediated [3H]-cholesterol efflux (by 50%) but did not reduce [3H]-24(S)-hydroxycholesterol efflux. In addition to apoA-I, pBCEC express and secrete apoM mainly to the basolateral (brain) compartment. HDL enhanced expression and secretion of apoM by pBCEC, apoM-enriched HDL promoted cellular cholesterol efflux more efficiently than apoM-free HDL, while apoM-silencing diminished cellular cholesterol release. We suggest that ABCG1 and apoM are centrally involved in regulation of cholesterol metabolism/turnover at the BBB.  相似文献   

8.
ATP-binding cassette transporter G1 (ABCG1) plays an important role in macrophage reverse cholesterol transport in vivo by promoting cholesterol efflux onto lipidated apoA-I. However, the underlying mechanism is unclear. Here, we found that ABCG1 co-immunoprecipitated with caveolin-1 (CAV1) but not with flotillin-1 and -2. Knockdown of CAV1 expression using siRNAs significantly reduced ABCG1-mediated cholesterol efflux without detectable effect on ABCA1-mediated cholesterol efflux. Disruption of the putative CAV1 binding site in ABCG1, through replacement of tyrosine residues at positions 487 and 489 or at positions 494 and 495 with alanine (Y487AY489A and Y494AY495A), impaired the interaction of ABCG1 with CAV1 and significantly decreased ABCG1-mediated cholesterol efflux. The substitution of Tyr494 and Tyr495 with Phe or Trp that resulted in an intact CAV1 binding site had no effect. Furthermore, Y494AY495A affected trafficking of ABCG1 to the cell surface. The mutant protein is mainly located intracellularly. Finally, we found that CAV1 co-immunoprecipitated with ABCG1 and regulated cholesterol efflux to reconstituted HDL in THP-1-derived macrophages upon the liver X receptor agonist treatment. These findings indicate that CAV1 interacts with ABCG1 and regulates ABCG1-mediated cholesterol efflux.  相似文献   

9.
脑是富含胆固醇的器官,机体大约有25%的胆固醇集中在脑组织中.ATP结合盒超家族转运蛋白对脑组织中胆固醇的膜外转运和动态平衡起着重要的调节作用.研究发现,ATP结合盒超家族转运蛋白亚体ABCG1、ABCG4和ABCA1在成体脑组织中存在不同程度的表达,一种或多种亚体的缺失可以导致神经退行性病变.然而,ATP结合盒超家族转运蛋白亚体对脑发育过程中脑胆固醇动态变化的调节缺乏相关性的报道.在本研究中,从低胆固醇饮食喂养的C57BL/6J小鼠中获取出生后不同发育时期的脑组织,对ABCG1、ABCG4和ABCA1的mRNA与蛋白质表达水平进行测定,并对脑组织和血清中ATP结合盒超家族转运蛋白的表达水平与胆固醇水平的相关性进行研究.同时,使用ABCG1、ABCG4单一基因敲除鼠和ABCG1、ABCG4双基因敲除鼠,研究ATP结合盒超家族转运蛋白对与胆固醇合成的相关基因表达的影响以及对脑组织胆固醇代谢的调节作用.结果发现,ABCG1、ABCG4和ABCA1在机体多个器官中均有表达,但ABCG1和ABCG4在小鼠脑组织中表达量最高.在脑组织发育过程中,ABCG1和ABCG4mRNA水平呈现明显的表达时效性,小鼠于出生后42天达到峰值,而ABCA1 mRNA的表达水平无明显变化.血清和脑组织中中酯化型胆固醇水平呈双高峰分布,也于出生后42天达到最高.基因敲除鼠模型显示,单一敲除ABCG1或者ABCG4基因对脑组织胆固醇水平无明显影响,而ABCG1和ABCG4基因的同时缺失导致脑胆固醇水平显著升高,并明显降低胆固醇合成相关基因的表达水平.本研究表明,在脑发育成熟过程中,ATP结合盒超家族转运蛋白亚体ABCG1和ABCG4,而非ABCA1,以调节脑胆固醇的膜外转运;ABCG1和ABCG4互补调控脑胆固醇的动态平衡.  相似文献   

10.
11.
High density lipoprotein (HDL) cholesterol has direct effects on numerous cell types that influence cardiovascular and metabolic health. These include endothelial cells, vascular smooth-muscle cells, leukocytes, platelets, adipocytes, skeletal muscle myocytes, and pancreatic β cells. The effects of HDL or apoA-I, its major apolipoprotein, occur through the modulation of intracellular calcium, oxygen-derived free-radical production, numerous kinases, and enzymes, including endothelial nitric-oxide synthase (eNOS). ApoA-I and HDL also influence gene expression, particularly genes encoding mediators of inflammation in vascular cells. In many paradigms, the change in intracellular signaling occurs as a result of cholesterol efflux, with the cholesterol acceptor methyl-β-cyclodextrin often invoking responses identical to HDL or apoA-I. The ABC transporters ABCA1 and ABCG1 and scavenger receptor class B, type I (SR-BI) frequently participate in the cellular responses. Structure-function relationships are emerging for signal initiation by ABCA1 and SR-BI, with plasma membrane cholesterol binding by the C-terminal transmembrane domain of SR-BI uniquely enabling it to serve as a sensor of changes in membrane cholesterol. Further investigation of the processes underlying HDL and apoA-I modulation of intracellular signaling will potentially reveal new prophylactic and therapeutic strategies to optimize both cardiovascular and metabolic health.  相似文献   

12.
13.
Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1−/− mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.  相似文献   

14.
High cholesterol turnover catalyzed by cholesterol 24‐hydroxylase is essential for neural functions, especially learning. Because 24(S)‐hydroxycholesterol (24‐OHC), produced by 24‐hydroxylase, induces apoptosis of neuronal cells, it is vital to eliminate it rapidly from cells. Here, using differentiated SH‐SY5Y neuron‐like cells as a model, we examined whether 24‐OHC is actively eliminated via transporters induced by its accumulation. The expression of ABCA1 and ABCG1 was induced by 24‐OHC, as well as TO901317 and retinoic acid, which are ligands of the nuclear receptors liver X receptor/retinoid X receptor (LXR/RXR). When the expression of ABCA1 and ABCG1 was induced, 24‐OHC efflux was stimulated in the presence of high‐density lipoprotein (HDL), whereas apolipoprotein A‐I was not an efficient acceptor. The efflux was suppressed by the addition of siRNA against ABCA1, but not by ABCG1 siRNA. To confirm the role of each transporter, we analyzed human embryonic kidney 293 cells stably expressing human ABCA1 or ABCG1; we clearly observed 24‐OHC efflux in the presence of HDL, whereas efflux in the presence of apolipoprotein A‐I was marginal. Furthermore, the treatment of primary cerebral neurons with LXR/RXR ligands suppressed the toxicity of 24‐OHC. These results suggest that ABCA1 actively eliminates 24‐OHC in the presence of HDL as a lipid acceptor and protects neuronal cells.  相似文献   

15.
The nuclear receptors Liver X receptors, LXRα and LXRβ, regulate cholesterol and triglyceride metabolism. We and others have previously reported that synthetic LXR agonists reduced atherosclerosis in models of mouse with no detectable plasma cholesteryl ester transfer protein (CETP) activity, which plays an important role in reverse cholesterol transport. In the present study, we investigated the effect of LXR activation in rabbits to elucidate the influence of CETP activity. First, we cloned rabbit LXRs cDNA. The data indicated that rabbit LXRα was mostly highly expressed in the liver, whereas LXRβ expression was ubiquitous. Next, we investigated the effect of LXR agonist on lipid levels. Treatment with LXR agonist T0901317 increased plasma CETP activity and consequently elevated LDL, but no change in HDL. High cholesterol (HC) diet-feeding, which is thought to provide oxysterols as the natural agonists, could also increase expression of CETP and other LXR target genes. Finally, we tested T0901317 in the atherosclerosis intervention study. Chronic administration of T0901317 significantly reduced atherosclerosis in HC diet-fed rabbits despite less favorable lipid profiles, i.e. increases of plasma triglycerides and no change of HDL. T0901317 induced ATP-binding cassette transporters ABCA1 and ABCG1 and suppressed inflammatory genes expression in the aorta, suggesting that direct actions of LXR agonist on vascular gene expression are likely to contribute to the antiatherogenic effect. The present work strongly supports the idea that LXR agonists could be beneficial as therapeutic agents for treatment of atherosclerosis.  相似文献   

16.
Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis and the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid droplets associated with cholesterosis in GBECs. In conclusion, the present findings indicate that the anti-lipid deposition action of 22(R)-hydroxycholesterol combined with pioglitazone involves the activation of the PPARγ–LXRα–ABCA1 pathway, increased ABCA1 expression and the efflux of cholesterol from GBECs. Thus, 22(R)-hydroxycholesterol synergistically combined with pioglitazone to produce a remarkable effect on lipid deposition in cholesterosis GBECs.  相似文献   

17.
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69–99% of control by double deletion mutants apoA-I[Δ(1–41)Δ(185–243)] and apoA-I[Δ(1–59)Δ(185–243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.  相似文献   

18.
Recent developments in lipid metabolism have shown the importance of ATP binding cassette transporters (ABCs) in controlling cellular and total body lipid homeostasis. ABCA1 mediates the transport of cholesterol and phospholipids from cells to lipid-poor apolipoprotein A-I (apoA-I), whereas ABCG1 and ABCG4 mediate the transport of cholesterol from cells to lipidated lipoproteins. ABCA1, ABCG1, and ABCG4 are all expressed in cholesterol-loaded macrophages, and macrophages from ABCA1 and ABCG1 knockout mice accumulate cholesteryl esters. Here, we show that the lipidated particles generated by incubating cells overexpressing ABCA1 with apoA-I are efficient acceptors for cholesterol released from cells overexpressing either ABCG1 or ABCG4. The cholesterol released to the particles was derived from a cholesterol oxidase-accessible plasma membrane pool in both ABCG1 and ABCG4 cells, which is the same pool of cholesterol shown previously to be removed by high density lipoproteins. ABCA1 cells incubated with apoA-I generated two major populations of cholesterol- and phospholipid-rich lipoprotein particles that were converted by ABCG1 or ABCG4 cells to one major particle population that was highly enriched in cholesterol. These results suggest that ABCG1 and ABCG4 act in concert with ABCA1 to maximize the removal of excess cholesterol from cells and to generate cholesterol-rich lipoprotein particles.  相似文献   

19.
Impaired cell cholesterol trafficking in Niemann-Pick type C (NPC) disease results in the first known instance of impaired regulation of the ATP-binding cassette transporter A1 (ABCA1), a lipid transporter mediating the rate-limiting step in high density lipoprotein (HDL) formation, as a cause of low plasma HDL-cholesterol in humans. We show here that treatment of human NPC1(-/-) fibroblasts with the liver X receptor (LXR) agonist TO-901317 increases ABCA1 expression and activity in human NPC1(-/-) fibroblasts, as indicated by near normalization of efflux of radiolabeled phosphatidylcholine and a marked increase in efflux of cholesterol mass to apoA-I. LXR agonist treatment prior to and during apoA-I incubation resulted in reduction in filipin staining of unesterified cholesterol in late endosomes/lysosomes, as well as cholesterol mass, in NPC1(-/-) cells. HDL species in human NPC disease plasma showed the same pattern of diminished large, cholesterol-rich alpha-1 HDL particles as seen in isolated heterozygous ABCA1 deficiency. Incubating NPC1(-/-) fibroblasts with the LXR agonist normalized the pattern of HDL particle formation by these cells. ABCG1, another LXR target gene involved in cholesterol efflux to HDL, also showed diminished expression in NPC1(-/-) fibroblasts and increased expression upon LXR agonist treatment. These results suggest that NPC1 mutations can be largely bypassed and that NPC1 protein function is non-essential for the trafficking and removal of cellular cholesterol if the down-stream defects in ABCA1 and ABCG1 regulation in NPC disease cells are corrected using an LXR agonist.  相似文献   

20.

Objectives

The uptake of oxidized LDL (oxLDL) by macrophages is a key initial event in atherogenesis, and the removal of oxidized lipids from artery wall via reverse cholesterol transport is considered antiatherogenic. The aims of this study were to investigate the pathways mediating the removal of oxysterols from oxLDL-loaded macrophages, and the subsequent uptake of the oxysterols by hepatocytes.

Methods

LDL was labeled with [3H]cholesterol, and LDL-[3H]cholesterol was oxidized by copper using a standard method. [3H]oxysterol formation in oxLDL was analyzed by thin layer chromatography. oxLDL-[3H]sterol was incubated with macrophages, allowing the uptake of [3H]sterol by macrophages. [3H]sterol efflux from macrophages mediated by ATP binding cassette transporters (ABCA1, ABCG1), or scavenger receptor class B type I (SR-BI) was measured. The subsequent uptake of the [3H]sterol by hepatocytes was also determined.

Results

7-Ketocholesterol was the major oxysterol formed in oxLDL, and it was significantly higher in oxLDL compared with that in native LDL (naLDL). oxLDL-derived sterol efflux to HDL from macrophages was significantly increased compared with naLDL-derived sterol, and it was mainly mediated by ABCG1, but not by ABCA1 or SR-BI. Moreover, although HDL dose-dependently induced sterol efflux from macrophages, only the exported sterol by ABCG1 pathway was efficiently taken up by hepatocytes.

Conclusions

ABCG1 mediates oxysterol efflux from oxLDL-loaded macrophages, and the exported oxysterol by ABCG1 pathway can be selectively taken up by hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号