首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Owing to its capability of discriminating subtle mass-altering structural differences such as double bonds or elongated acyl chains, MALDI-based imaging MS (IMS) has emerged as a powerful technique for analysis of lipid distribution in tissue at moderate spatial resolution of about 50 μm. However, it is still unknown if MS1-signals and ion intensity images correlate with the corresponding apparent lipid concentrations. Analyzing renal sulfated glycosphingolipids, sulfatides, we validate for the first time IMS-signal identities using corresponding sulfatide-deficient kidneys. To evaluate the extent of signal quenching effects interfering with lipid quantification, we surgically dissected the three major renal regions (papillae, medulla, and cortex) and systematically compared MALDI IMS of renal sulfatides with quantitative analyses of corresponding lipid extracts by on-target MALDI TOF-MS and by ultra-performance LC-ESI-(triple-quadrupole)tandem MS. Our results demonstrate a generally strong correlation (R2 > 0.9) between the local relative sulfatide signal intensity in MALDI IMS and absolute sulfatide quantities determined by the other two methods. However, high concentrations of sulfatides in the papillae and medulla result in an up to 4-fold signal suppression. In conclusion, our study suggests that MALDI IMS is useful for semi-quantitative dissection of relative local changes of sulfatides and possibly other lipids in tissue.  相似文献   

2.
3.
The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.  相似文献   

4.
Members of the colony stimulating factor cytokine family play important roles in macrophage activation and recruitment to inflammatory lesions. Among them, granulocyte-macrophage colony stimulating factor (GM-CSF) is known to be associated with immune response to mycobacterial infection. However, the mechanism through which Mycobacterium tuberculosis (MTB) affects the expression of GM-CSF is poorly understood. Using PMA-differentiated THP-1 cells, we found that MTB infection increased GM-CSF mRNA expression in a dosedependent manner. Induction of GM-CSF mRNA expression peaked 6 h after infection, declining gradually thereafter and returning to its basal levels at 72 h. Secretion of GM-CSF protein was also elevated by MTB infection. The increase in mRNA expression and protein secretion of GM-CSF caused by MTB was inhibited in cells treated with inhibitors of p38 MAPK, mitogen-activated protein kinase kinase (MEK-1), and PI3-K. These results suggest that up-regulation of GM-CSF by MTB is mediated via the PI3-K/MEK1/p38 MAPK-associated signaling pathway. [BMB Reports 2013; 46(4): 213-218]  相似文献   

5.
6.
Mammalian kidneys are rich in sulfatides. Papillary sulfatides, especially, contribute to renal adaptation to chronic metabolic acidosis. Due to differences in their cer­amide (Cer) anchors, the structural diversity of renal sulfatides is large. However, the underling biological function of this complexity is not understood. As a compound’s function and its tissue location are intimately connected, we analyzed individual renal sulfatide distributions of control and Cer synthase 2 (CerS)2-deficient mice by imaging MS (IMS) and by LC-MS2 (in controls for the cortex, medulla, and papillae separately). To explain locally different structures, we compared our lipid data with regional mRNA levels of corresponding anabolic enzymes. The combination of IMS and in source decay-LC-MS2 analyses revealed exclusive expression of C20-sphingosine-containing sulfatides within the renal papillae, whereas conventional C18-sphingosine-containing compounds were predominant in the medulla, and sulfatides with a C18-phytosphingosine were restricted to special cortical structures. CerS2 deletion resulted in bulk loss of sulfatides with C23/C24-acyl chains, but did not lead to decreased urinary pH, as previously observed in sulfatide-depleted kidneys. The reasons may be the almost unchanged C22-sulfatide levels and constant total renal sulfatide levels due to compensation with C16- to C20-acyl chain-containing compounds. Intriguingly, CerS2-deficient kidneys were completely depleted of phytosphingosine-containing cortical sulfatides without any compensation.  相似文献   

7.
Understanding the mechanism of action of pore-forming toxins (PFTs) produced by different bacteria, as well as the host responses to toxin action, would provide ways to deal with these pathogenic bacteria. PFTs affect the permeability of target cells by forming pores in their plasma membrane. Target organisms may overcome these effects by triggering intracellular responses that have evolved as defense mechanisms to PFT. Among them it is well documented that stress-activated protein kinases, and specially MAPK p38 pathway, play a crucial role triggering defense responses to several PFTs in different eukaryotic cells. In this review we describe different intracellular effects induced by PFTs in eukaryotic cells and highlight diverse responses activated by p38 pathway.  相似文献   

8.
9.
10.
Cannabinoids have been shown to inhibit the growth of a broad spectrum of tumour cells. However, the molecular mechanisms involved in that effect have not been completely elucidated. Here, we investigated the possible involvement of mitogen-activated protein kinases (MAPKs) in CB2 receptor-induced apoptosis of human leukaemia cells. Results show that stimulation of the CB2 receptor leads to p38 MAPK activation and that inhibition of this kinase attenuates CB2 receptor-induced caspase activation and apoptosis. These findings support a role for p38 MAPK in CB2 receptor-induced apoptosis of human leukaemia cells.  相似文献   

11.
The anti-viral activity of gangliosides such as SPG (sialylparagloboside), GD1a, GM3, and GM4 was assessed by inhibition of the cytopathy of MDCK cells due to infection with the influenza virus A/PR/8/34. The inhibitory effect was in the following sequence: SPG>GD1a>GM3>GM4. The IC50 of SPG and GD1a was 7 and 70 microM, respectively, indicating that they are more effective than the representative inhibitor amantadine. Although 3'-sialyllactose (3'-SL) and 3'-sialyllactosamine (3'-SLN), which are identical to the terminal trisaccharides of GM3 and SPG, respectively, did not show any inhibitory effect, introduction of an amino group to the reducing end of 3'-SL following amidation with lauroyl chloride gave the inhibitory potency, which was comparable to that of GM3. These results suggest that the viral hemagglutinin recognizes exogenous sialyloligosaccharides rather than inherent sialyloligosaccharides expressed on MDCK cells, since introduction of the hydrophobic moiety to oligosaccharides might cause micelle formation.  相似文献   

12.
13.
An enzyme has been partially purified from Escherichia coli which catalyzes in vitro the transfer of the Δ2-isopentenyl group from Δ2-isopentenyl pyrophosphate to an adenosine residue in Mycoplasma sp. (Kid) tRNA. The product of the reaction is N6-(Δ2-isopentenyl) adenosine, which is known to be absent in this Mycoplasma tRNA. The enzyme has an approximate molecular weight of 55,000 daltons, requires reduced sulfhydryl groups and a divalent metal ion for full activity, and is specific for tRNA.  相似文献   

14.
Goel A  Prasad AK  Parmar VS  Ghosh B  Saini N 《FEBS letters》2007,581(13):2447-2454
Coumarins have attracted intense interest in recent years because they have been identified from natural sources, especially green plants and have diverse pharmacological properties. In this study, we investigated whether 7,8-dihydroxy-4-methylcoumarin (DHMC) caused apoptosis in A549 human non-small cell lung carcinoma cells (NSCLC) and, if so, by what mechanisms. Here, we show that, in A549 human NSCLC cells, DHMC induces apoptosis through mitochondria-mediated caspase-dependent pathway. Although an increase in the levels of reactive oxygen species (ROS) was observed, pre-treatment with antioxidant showed no protective effect against DHMC-induced apoptosis. In addition, our immunoblot data revealed that DHMC treatment led to down-regulation of Bcl-xl, Bax, p21, Cox-2, p53 and upregulation of c-Myc. Results in the present study for the first time suggest that DHMC induces apoptosis in human lung A549 cells through partial inhibition of ERK/MAPK signaling.  相似文献   

15.
The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl2) on human umbilical vein endothelial cells (HUVECs). At 4 μM, CdCl2 induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24 h. This effect of CdCl2 was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl2-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and β-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling.  相似文献   

16.
Turgeon B  Lang BF  Meloche S 《Genomics》2002,80(6):673-680
Extracellular signal-regulated kinase 3 (ERK3) is a distantly related member of the mitogen-activated protein (MAP) kinase family of serine/threonine kinases. Here, we report the characterization of the genomic loci encoding ERK3 in mice and humans. The mouse ERK3 gene (Mapk6) spans more than 20 kb and is split into six exons. Its structure is similar to that of the human MAPK6 gene, which extends over 40 kb. We also identified and characterized a mouse Mapk6 processed pseudogene. In humans, database analysis has revealed the presence of six MAPK6 processed pseudogenes localized on four different chromosomes. We further show that the structure of MAPK6 is closely related to that of the gene encoding the homologous protein kinase p63(MAPK) (MAPK4), suggesting that the two genes arose by duplication. Our analysis demonstrates that the ERK3 subfamily of MAP kinase genes is composed of two functional genes, MAPK6 and MAPK4, and several pseudogenes.  相似文献   

17.
Cytoplasmic Ca2+ is a master regulator of airway physiology; it controls fluid, mucus, and antimicrobial peptide secretion, ciliary beating, and smooth muscle contraction. The focus of this review is on the role of cytoplasmic Ca2+ in fluid secretion by airway exocrine secretory cells. Airway submucosal gland serous acinar cells are the primary fluid secreting cell type of the cartilaginous conducting airways, and this review summarizes the current state of knowledge of the molecular mechanisms of serous cell ion transport, with an emphasis on their regulation by intracellular Ca2+. Many neurotransmitters that regulate secretion from serous acinar cells utilize Ca2+ as a second messenger. Changes in intracellular Ca2+ concentration regulate the activities of ion transporters and channels involved in transepithelial ion transport and fluid secretion, including Ca2+-activated K+ channels and Cl channels. We also review evidence of interactions of Ca2+ signaling with other signaling pathways (cAMP, NO) that impinge upon different ion transport pathways, including the cAMP/PKA-activated cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel. A better understanding of Ca2+ signaling and its targets in airway fluid secretion may identify novel strategies to intervene in airway diseases, for example to enhance fluid secretion in CF airways.  相似文献   

18.
Functions of the MAPK family in vertebrate-development   总被引:1,自引:0,他引:1  
The mitogen activated protein kinase (MAPK) family, consisting of the extracellular signal regulated protein kinase, c-Jun amino terminal MAPK and p38 subfamilies, is conserved in evolution throughout the plant and animal kingdoms. These proteins have been implicated in diverse cellular processes including cell growth, migration, proliferation, differentiation, survival and development. Gene-targeting approaches in mice, chickens, frogs and zebrafish revealed crucial roles of MAPK in vertebrate development. Gene-disruption or -silencing often lead to lethal effects, therefore the zebrafish ex utero development provides an excellent in vivo model to study the function of MAPK in early embryogenesis. In this review, we summarize the current understanding of the MAPK family function in vertebrate-development and place this into the perspective of possibilities for future research.  相似文献   

19.
20.
Angiotensin II elicits cytosolic Ca2+ signal that is transferred into the mitochondria. Previously we found in H295R cells that this signal transfer is enhanced by both the inhibition of p38 MAPK and a novel isoform of PKC [G. Szanda, P. Koncz, A. Rajki, A. Spät, Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake, Cell Calcium 43 (2008) 250–259]. Now we report that simultaneous activation of these protein kinases (by TNFα and PMA + an inhibitor of the conventional PKC isoforms, respectively) attenuates the transfer of cytosolic Ca2+ signal, elicited by depolarisation or store-operated Ca2+ influx, into the mitochondria. The Ca2+ uptake enhancing effect of the p38 MAPK inhibitor SB202190 is due to the inhibition of p38 MAPK and not to a direct mitochondrial action. Protein kinases reduce mitochondrial [Ca2+] by inhibiting the uptake mechanism. The threshold of mitochondrial Ca2+ uptake may depend on the activity of p38 MAPK. The silencing of protein kinase D (PKD) also results in enhanced transfer of Ca2+ signal from the cytosol into the mitochondria. Our data indicate that Ca2+ mobilising agonists, through the simultaneous activation of p38 MAPK, a novel PKC isoform and PKD, exert a negative feed-forward action on mitochondrial Ca2+ uptake, thus reducing the risk of Ca2+ overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号