首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of lipid research》2017,58(12):2239-2254
Alzheimer's disease (AD) is the most common form of dementia in older adults. Currently, there is no cure for AD. The hallmark of AD is the accumulation of extracellular amyloid plaques composed of amyloid-β (Aβ) peptides (especially Aβ1-42) and neurofibrillary tangles, composed of hyperphosphorylated tau and accompanied by chronic neuroinflammation. Aβ peptides are derived from the amyloid precursor protein (APP). The oligomeric form of Aβ peptides is probably the most neurotoxic species; its accumulation eventually forms the insoluble and aggregated amyloid plaques. ApoE is the major apolipoprotein of the lipoprotein(s) present in the CNS. ApoE has three alleles, of which the Apoe4 allele constitutes the major risk factor for late-onset AD. Here we describe the complex relationship between ApoE4, oligomeric Aβ peptides, and cholesterol homeostasis. The review consists of four parts: 1) key elements involved in cellular cholesterol metabolism and regulation; 2) key elements involved in intracellular cholesterol trafficking; 3) links between ApoE4, Aβ peptides, and disturbance of cholesterol homeostasis in the CNS; 4) potential lipid-based therapeutic targets to treat AD. At the end, we recommend several research topics that we believe would help in better understanding the connection between cholesterol and AD for further investigations.  相似文献   

2.
酰基辅酶A:胆固醇酰基转移酶(ACAT)是细胞内唯一催化游离胆固醇与长链脂肪酸形成胆固醇酯的酶,在维持细胞内胆固醇、脂肪酸等脂质代谢平衡中起着极重要的作用。人类一些重要疾病如心脑血管病的动脉粥样硬化、神经系统的阿尔茨海默症、消化吸收系统的胆囊病变等都与ACAT紧密关联。本文主要从人ACAT的表达、功能效应、抑制剂应用前景等三方面介绍有关的研究进展。  相似文献   

3.
The enzymes of the acyl-coenzyme A:cholesterol acyltransferase (ACAT) family are responsible for the in vivo synthesis of neutral lipids.They are potential drug targets for the intervention of atherosclerosis,hyperlipidemia,obesity,type Ⅱ diabetes and even Alzheimer's disease.ACAT family enzymes are integral endoplasmic reticulum (ER) membrane proteins and can be divided into ACAT branch and acyl-coenzyme A:diacylglycerol acyltransferase 1 (DGATI) branch according to their substrate specificity.The ACAT branch catalyzes synthesis of cholesteryl esters using long-chain fatty acyl-coenzyme A and cholesterol as substrates,while the DGAT1 branch catalyzes synthesis of triacylglycerols using fatty acylcoenzyme A and diacylglycerol as substrates.In this review,we mainly focus on the recent progress in the structural research of ACAT family enzymes,including their disulfide linkage,membrane topology,subunit interaction and catalysis mechanism.  相似文献   

4.
The enzymes of the acyl-coenzyme A: cholesterol acyltransferase (ACAT) family are responsible for the in vivo synthesis of neutral lipids. They are potential drug targets for the intervention of atherosclerosis, hyperlipidemia, obesity, type II diabetes and even Alzheimer’s disease. ACAT family enzymes are integral endoplasmic reticulum (ER) membrane proteins and can be divided into ACAT branch and acyl-coenzyme A: diacylglycerol acyltransferase 1 (DGAT1) branch according to their substrate specificity. The ACAT branch catalyzes synthesis of cholesteryl esters using long-chain fatty acyl-coenzyme A and cholesterol as substrates, while the DGAT1 branch catalyzes synthesis of triacylglycerols using fatty acylcoenzyme A and diacylglycerol as substrates. In this review, we mainly focus on the recent progress in the structural research of ACAT family enzymes, including their disulfide linkage, membrane topology, subunit interaction and catalysis mechanism.  相似文献   

5.
High-density lipoproteins are the putative vehicles for cholesterol removal from monocyte-derived macrophages, which are an important cell type in all stages of atherosclerosis. The role of HDL2, an HDL subclass that accounts for most variation in plasma HDL-cholesterol concentration, in cholesterol metabolism in monocyte-derived macrophages is not known. In this study, the dose-dependent effects of HDL2 on cellular cholesterol mass, efflux, and esterification, and on cellular cholesteryl ester (CE) hydrolysis using the mouse macrophage P388D1 cell line was investigated. HDL2 at low concentrations (40 μg protein/ml) decreased CE content without affecting cellular free cholesterol content (FC), CE hydrolysis, or cholesterol biosynthesis. In addition, HDL2 at low concentrations reduced cellular acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and increased FC efflux from macrophages. Thus, HDL2 has two potential roles in reverse cholesterol transport. In one, HDL2 is an acceptor of macrophage FC. In the other, more novel role, HDL2 increases the availability of macrophage FC through the inhibition of ACAT. Elucidation of the mechanism by which HDL2 inhibits ACAT could identify new therapeutic targets that enhance the transfer of cholesterol from macrophages to the liver.  相似文献   

6.
Acyl-CoA:cholesterol acyltransferase (ACAT) catalyzes the formation of cholesteryl estersfrom cholesterol and long-chain fatty-acyl-coenzyme A.At the single-cell level,ACAT serves as a regulatorof intracellular cholesterol homeostasis.In addition,ACAT supplies cholesteryl esters for lipoproteinassembly in the liver and small intestine.Under pathological conditions,the accumulation of cholesterylesters produced by ACAT in macrophages contributes to foam cell formation,a hallmark of the earlystage of atherosclerosis.Several reviews addressing various aspects of ACAT and ACAT inhibitors areavailable [1-8].This review briefly outlines the current knowledge on the biochemical properties of humanACATs,and then focuses on discussing the merit of ACAT as a drug target for pharmaceutical interventionsagainst atherosclerosis.  相似文献   

7.
The process of cholesterol absorption has yet to be completely defined at the molecular level. Because of its ability to esterify cholesterol for packaging into nascent chylomicrons, ACAT2 plays an important role in cholesterol absorption. However, it has been found that cholesterol absorption is not completely inhibited in ACAT2-deficient (ACAT2 KO) mice. Because ABCA1 mRNA expression was increased 3-fold in the small intestine of ACAT2 KO mice, we hypothesized that ABCA1-dependent cholesterol efflux sustains cholesterol absorption in the absence of ACAT2. To test this hypothesis, cholesterol absorption was measured in mice deficient in both ABCA1 and ACAT2 (DKO). Compared with wild-type, ABCA1 KO, or ACAT2 KO mice, DKO mice displayed the lowest level of cholesterol absorption. The concentrations of hepatic free and esterified cholesterol and gallbladder bile cholesterol were significantly reduced in DKO compared with wild-type and ABCA1 KO mice, although these measures of hepatic cholesterol metabolism were very similar in DKO and ACAT2 KO mice. We conclude that ABCA1, especially in the absence of ACAT2, can have a significant effect on cholesterol absorption, although ACAT2 has a more substantial role in this process than ABCA1.  相似文献   

8.
Amyloid beta-protein (Aβ) is thought to be one of the primary factors causing neurodegeneration in Alzheimer's disease (AD). This protein is an amphipathic molecule that perturbs membranes, binds lipids and alters cell function. Several studies have reported that Aβ alters membrane fluidity but the direction of this effect has not been consistently observed and explanations for this lack of consistency are proposed. Cholesterol is a key component of membranes and cholesterol interacts with Aβ in a reciprocal manner. Aβ impacts on cholesterol homeostasis and modification of cholesterol levels alters Aβ expression. In addition, certain cholesterol lowering drugs (statins) appear to reduce the risk of AD in human subjects. However, the role of changes in the total amount of brain cholesterol in AD and the mechanisms of action of statins in lowering the risk of AD are unclear. Here we discuss data on membranes, cholesterol, Aβ and AD, and propose that modification of the transbilayer distribution of cholesterol in contrast to a change in the total amount of cholesterol provides a cooperative environment for Aβ synthesis and accumulation in membranes leading to cell dysfunction including disruption in cholesterol homeostasis.  相似文献   

9.
10.
Alzheimer's disease (AD) is the most common form of dementia. Amyloid-β (Aβ) peptide, generated by proteolytic cleavage of the amyloid precursor protein, is central to AD pathogenesis. Most pharmaceutical activity in AD research has focused on Aβ, its generation and clearance from the brain. In particular, there is much interest in immunotherapy approaches with a number of anti-Aβ antibodies in clinical trials. We have developed a monoclonal antibody, called WO2, which recognises the Aβ peptide. To this end, we have determined the three-dimensional structure, to near atomic resolution, of both the antibody and the complex with its antigen, the Aβ peptide. The structures reveal the molecular basis for WO2 recognition and binding of Aβ. The Aβ peptide adopts an extended, coil-like conformation across its major immunodominant B-cell epitope between residues 2 and 8. We have also studied the antibody-bound Aβ peptide in the presence of metals known to affect its aggregation state and show that WO2 inhibits these interactions. Thus, antibodies that target the N-terminal region of Aβ, such as WO2, hold promise for therapeutic development.  相似文献   

11.
Central to Alzheimer's disease (AD) pathology is the assembly of monomeric amyloid-β peptide (Aβ) into oligomers and fibers. The most abundant protein in the blood plasma and cerebrospinal fluid is human serum albumin. Albumin can bind to Aβ and is capable of inhibiting the fibrillization of Aβ at physiological (μM) concentrations. The ability of albumin to bind Aβ has recently been exploited in a phase II clinical trial, which showed a reduction in cognitive decline in AD patients undergoing albumin–plasma exchange. Here we explore the equilibrium between Aβ monomer, oligomer and fiber in the presence of albumin. Using transmission electron microscopy and thioflavin-T fluorescent dye, we have shown that albumin traps Aβ as oligomers, 9 nm in diameter. We show that albumin-trapped Aβ oligomeric assemblies are not capable of forming ion channels, which suggests a mechanism by which albumin is protective in Aβ-exposed neuronal cells. In vivo albumin binds a variety of endogenous and therapeutic exogenous hydrophobic molecules, including cholesterol, fatty acids and warfarin. We show that these molecules bind to albumin and suppress its ability to inhibit Aβ fiber formation. The interplay between Aβ, albumin and endogenous hydrophobic molecules impacts Aβ assembly; thus, changes in cholesterol and fatty acid levels in vivo may impact Aβ fibrillization, by altering the capacity of albumin to bind Aβ. These observations are particularly intriguing given that high cholesterol or fatty acid diets are well-established risk factors for late-onset AD.  相似文献   

12.
Intestinal cholesterol absorption involves the chylomicron and HDL pathways and is dependent on microsomal triglyceride transfer protein (MTP) and ABCA1, respectively. Chylomicrons transport free and esterified cholesterol, whereas HDLs transport free cholesterol. ACAT2 esterifies cholesterol for secretion with chylomicrons. We hypothesized that free cholesterol accumulated during ACAT2 deficiency may be secreted with HDLs when chylomicron assembly is blocked. To test this, we studied cholesterol absorption in mice deficient in intestinal MTP, global ACAT2, and both intestinal MTP and global ACAT2. Intestinal MTP ablation significantly increased intestinal triglyceride and cholesterol levels and reduced their transport with chylomicrons. In contrast, global ACAT2 deficiency had no effect on triglyceride absorption but significantly reduced cholesterol absorption with chylomicrons and increased cellular free cholesterol. Their combined deficiency reduced cholesterol secretion with both chylomicrons and HDLs. Thus, contrary to our hypothesis, free cholesterol accumulated in the absence of MTP and ACAT2 is unavailable for secretion with HDLs. Global ACAT2 deficiency causes mild hypertriglyceridemia and reduces hepatosteatosis in mice fed high cholesterol diets by increasing hepatic lipoprotein production by unknown mechanisms. We show that this phenotype is preserved in the absence of intestinal MTP in global ACAT2-deficient mice fed a Western diet. Further, we observed increases in hepatic MTP activity in these mice. Thus, ACAT2 deficiency might increase MTP expression to avoid hepatosteatosis in cholesterol-fed animals. Therefore, ACAT2 inhibition might avert hepatosteatosis associated with high cholesterol diets by increasing hepatic MTP expression and lipoprotein production.  相似文献   

13.
Aggregation of a peptide, beta-amyloid (Aβ), is a hallmark molecular process found in Alzheimer’s disease (AD). During Aβ aggregation, oligomeric and fibrillar Aβ are formed, and these molecular self-assembly steps are implicated in generation of toxic effects in AD. Crocetin is a natural carotenoid dicarboxyl acid displaying various pharmaceutical effects and may be co-localized with Aβ mediated by human serum albumin. In the study presented here, we examined the effects of crocetin on Aβ aggregation in three different molecular pathways. Our results demonstrate that crocetin inhibited Aβ fibril formation and destabilized pre-formed Aβ fibrils. Moreover, crocetin caused stabilization of Aβ oligomers and prevented their conversion into Aβ fibrils. Our study reveals potential pathological and pharmaceutical implication of crocetin in AD and suggests possible application of crocetin for currently limited structural studies on unstable Aβ oligomers.  相似文献   

14.
The metabolic fate of newly absorbed cholesterol and phytosterol is orchestrated through adenosine triphosphate-binding cassette transporter G5 and G8 heterodimer (G5G8), and acyl CoA:cholesterol acyltransferase 2 (ACAT2). We hypothesized that intestinal G5G8 limits sterol absorption by reducing substrate availability for ACAT2 esterification and have attempted to define the roles of these two factors using gene deletion studies in mice. Male ACAT2(-/-), G5G8(-/-), ACAT2(-/-)G5G8(-/-) (DKO), and wild-type (WT) control mice were fed a diet with 20% of energy as palm oil and 0.2% (w/w) cholesterol. Sterol absorption efficiency was directly measured by monitoring the appearance of [(3)H]sitosterol and [(14)C]cholesterol tracers in lymph after thoracic lymph duct cannulation. The average percentage (± SEM) absorption of [(14)C]cholesterol after 8 h of lymph collection was 40.55 ± 0.76%, 19.41 ± 1.52%, 32.13 ± 1.60%, and 21.27 ± 1.35% for WT, ACAT2(-/-), G5G8(-/-), and DKO mice, respectively. [(3)H]sitosterol absorption was <2% in WT and ACAT2(-/-) mice, whereas it was up to 6.8% in G5G8(-/-) and DKO mice. G5G8(-/-) mice also produced chylomicrons with ~70% less cholesterol ester mass than WT mice. In contrast to expectations, the data demonstrated that the absence of G5G8 led to decreased intestinal cholesterol esterification and reduced cholesterol transport efficiency. Intestinal G5G8 appeared to limit the absorption of phytosterols; ACAT2 more efficiently esterified cholesterol than phytosterols. The data indicate that handling of sterols by the intestine involves both G5G8 and ACAT2 but that an additional factor (possibly Niemann-Pick C1-like 1) may be key in determining absorption efficiency.  相似文献   

15.
Acyl-CoA:cholesterol acyltransferase 2 (ACAT2) generates cholesterol esters (CE) for packaging into newly synthesized lipoproteins and thus is a major determinant of blood cholesterol levels. ACAT2 is expressed exclusively in the small intestine and liver, but the relative contributions of ACAT2 expression in these tissues to systemic cholesterol metabolism is unknown. We investigated whether CE derived from the intestine or liver would differentially affect hepatic and plasma cholesterol homeostasis. We generated liver-specific (ACAT2(L-/L-)) and intestine-specific (ACAT2(SI-/SI-)) ACAT2 knockout mice and studied dietary cholesterol-induced hepatic lipid accumulation and hypercholesterolemia. ACAT2(SI-/SI-) mice, in contrast to ACAT2(L-/L-) mice, had blunted cholesterol absorption. However, specific deletion of ACAT2 in the intestine generated essentially a phenocopy of the conditional knockout of ACAT2 in the liver, with reduced levels of plasma very low-density lipoprotein and hepatic CE, yet hepatic-free cholesterol does not build up after high cholesterol intake. ACAT2(L-/L-) and ACAT2(SI-/SI-) mice were equally protected from diet-induced hepatic CE accumulation and hypercholesterolemia. These results suggest that inhibition of intestinal or hepatic ACAT2 improves atherogenic hyperlipidemia and limits hepatic CE accumulation in mice and that depletion of intestinal ACAT2 is sufficient for most of the beneficial effects on cholesterol metabolism. Inhibitors of ACAT2 targeting either tissue likely would be beneficial for atheroprotection.  相似文献   

16.
Synaptic degeneration is one of the earliest hallmarks of Alzheimer disease (AD) and results in loss of cognitive function. One of the causative agents for the synaptic degeneration is the amyloid β-peptide (Aβ), which is formed from its precursor protein by two sequential cleavages mediated by β- and γ-secretase. We have earlier shown that γ-secretase activity is enriched in synaptic compartments, suggesting that the synaptotoxic Aβ is produced locally. Proteins that interact with γ-secretase at the synapse and regulate the production of Aβ can therefore be potential therapeutic targets. We used a recently developed affinity purification approach to identify γ-secretase associated proteins (GSAPs) in synaptic membranes and synaptic vesicles prepared from rat brain. Liquid chromatography-tandem mass spectrometry analysis of the affinity purified samples revealed the known γ-secretase components presenilin-1, nicastrin and Aph-1b along with a number of novel potential GSAPs. To investigate the effect of these GSAPs on APP processing, we performed siRNA experiments to knock down the expression of the GSAPs and measured the Aβ levels. Silencing of NADH dehydrogenase [ubiquinone] iron-sulfur protein 7 (NDUFS7) resulted in a decrease in Aβ levels whereas silencing of tubulin polymerization promoting protein (TPPP) resulted in an increase in Aβ levels. Treatment with γ-secretase inhibitors often results in Notch-related side effects and therefore we also studied the effect of the siRNAs on Notch processing. Interestingly, silencing of TPPP or NDUFS7 did not affect cleavage of Notch. We also studied the expression of TPPP and NDUFS7 in control and AD brain and found NDUFS7 to be highly expressed in vulnerable neurons such as pyramidal neurons in the hippocampus, whereas TPPP was found to accumulate in intraneuronal granules and fibrous structures in hippocampus from AD cases. In summary, we here report on two proteins, TPPP and NDUFS7, which interact with γ-secretase and alter the Aβ levels without affecting Notch cleavage.  相似文献   

17.
The hypothesis tested in this study was that cholesterol esterification by ACAT2 would increase cholesterol absorption efficiency by providing cholesteryl ester (CE) for incorporation into chylomicrons. The assumption was that absorption would be proportional to Acat2 gene dosage. Male ACAT2+/+, ACAT2+/−, and ACAT2−/− mice were fed a diet containing 20% of energy as palm oil with 0.2% (w/w) cholesterol. Cholesterol absorption efficiency was measured by fecal dual-isotope and thoracic lymph duct cannulation (TLDC) methods using [3H]sitosterol and [14C]cholesterol tracers. Excellent agreement among individual mice was found for cholesterol absorption measured by both techniques. Cholesterol absorption efficiency in ACAT2−/− mice was 16% compared with 46–47% in ACAT2+/+ and ACAT2+/− mice. Chylomicrons from ACAT2+/+ and ACAT2+/− mice carried ∼80% of total sterol mass as CE, whereas ACAT2−/− chylomicrons carried >90% of sterol mass in the unesterified form. The total percentage of chylomicron mass as CE was reduced from 12% in the presence of ACAT2 to ∼1% in ACAT2−/− mice. Altogether, the data demonstrate that ACAT2 increases cholesterol absorption efficiency by providing CE for chylomicron transport, but one copy of the Acat2 gene, providing ∼50% of ACAT2 mRNA and enzyme activity, was as effective as two copies in promoting cholesterol absorption.  相似文献   

18.
Assemblies of β-amyloid (Aβ) peptides are pathological mediators of Alzheimer's Disease (AD) and are produced by the sequential cleavages of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase. The generation of Aβ is coupled to neuronal activity, but the molecular basis is unknown. Here, we report that the immediate early gene Arc is required for activity-dependent generation of Aβ. Arc is a postsynaptic protein that recruits endophilin2/3 and dynamin to early/recycling endosomes that traffic AMPA receptors to reduce synaptic strength in both hebbian and non-hebbian forms of plasticity. The Arc-endosome also traffics APP and BACE1, and Arc physically associates with presenilin1 (PS1) to regulate γ-secretase trafficking and confer activity dependence. Genetic deletion of Arc reduces Aβ load in a transgenic mouse model of AD. In concert with the finding that patients with AD can express anomalously high levels of Arc, we hypothesize that Arc participates in the pathogenesis of AD.  相似文献   

19.
《Autophagy》2013,9(12):1842-1844
Alzheimer disease (AD) is sometimes referred to as type III diabetes because of the shared risk factors for the two disorders. Insulin resistance, one of the major components of type II diabetes mellitus (T2DM), is a known risk factor for AD. Insulin resistance increases amyloid-β peptide (Aβ) generation, but the exact mechanism underlying the linkage of insulin resistance to increased Aβ generation in the brain is unknown. In this study, we investigated the effect of insulin resistance on amyloid β (A4) precursor protein (APP) processing in mice fed a high-fat diet (HFD), and diabetic db/db mice. We found that insulin resistance promotes Aβ generation in the brain via altered insulin signal transduction, increased BACE1/β-secretase and γ-secretase activities, and accumulation of autophagosomes. Using an in vitro model of insulin resistance, we found that defects in insulin signal transduction affect autophagic flux by inhibiting the mechanistic target of rapamycin (MTOR) pathway. The insulin resistance-induced autophagosome accumulation resulted in alteration of APP processing through enrichment of secretase proteins in autophagosomes. We speculate that the insulin resistance that underlies the pathogenesis of T2DM might alter APP processing through autophagy activation, which might be involved in the pathogenesis of AD. Therefore, we propose that insulin resistance-induced autophagosome accumulation becomes a potential linker between AD and T2DM.  相似文献   

20.
Amyloid-β (Aβ) peptide accumulation in the brain is central to the pathogenesis of Alzheimer's disease (AD). Aβ is produced through proteolytic processing of a transmembrane protein, β-amyloid precursor protein (APP), by β- and γ-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Aβ. Members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apoER2, interact with APP and regulate its endocytic trafficking. Additionally, APP trafficking and processing are greatly affected by cellular cholesterol content. In this review, we summarize the current understanding of the roles of lipoprotein receptors and cholesterol in APP trafficking and processing and their implication for AD pathogenesis and therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号