首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fatty acid translocase (FAT)/CD36 has been associated with diverse normal and pathologic processes. These include scavenger receptor functions (uptake of apoptotic cells and modified lipid), lipid metabolism and fatty acid transport, adhesion, angiogenesis, modulation of inflammation, transforming growth factor- activation, atherosclerosis, diabetes and cardiomyopathy. Although CD36 was identified more than 25 years ago, it is only with the advent of recent genetic technology that in vivo evidence has emerged for its physiologic and pathologic relevance. As these in vivo studies are expanded, we will gain further insight into the mechanism(s) by which CD36 transmits a cellular signal, and this will allow the design of specific therapeutics that impact on a particular function of CD36.  相似文献   

2.
3.
Caveolin-1 and CD36 are plasma membrane fatty acid binding proteins that participate in adipocyte fatty acid uptake and metabolism. Both are associated with cholesterol-enriched caveolae/lipid rafts in the plasma membrane that are important for long chain fatty acid uptake. Depletion of plasma membrane cholesterol reversibly inhibited oleate uptake by adipocytes without altering the amount or the cell surface distribution of either caveolin-1 or CD36. Cholesterol levels thus regulate fatty acid uptake by adipocytes via a pathway that does not involve altered cell surface localization of caveolin-1 or CD36.  相似文献   

4.
Cellular fatty acid uptake is facilitated by a number of fatty acid transporters, FAT/CD36, FABPpm and FATP1. It had been presumed that FABPpm, was confined to the plasma membrane and was not regulated. Here, we demonstrate for the first time that FABPpm and FATP1 are also present in intracellular depots in cardiac myocytes. While we confirmed previous work that insulin and AICAR each induced the translocation of FAT/CD36 from an intracellular depot to the PM, only AICAR, but not insulin, induced the translocation of FABPpm. Moreover, neither insulin nor AICAR induced the translocation of FATP1. Importantly, the increased plasmalemmal content of these LCFA transporters was associated with a concomitant increase in the initial rate of palmitate uptake into cardiac myocytes. Specifically, the insulin-stimulated increase in the rate of palmitate uptake (+60%) paralleled the insulin-stimulated increase in plasmalemmal FAT/CD36 (+34%). Similarly, the greater AICAR-stimulated increase in the rate of palmitate uptake (+90%) paralleled the AICAR-induced increase in both plasmalemmal proteins (FAT/CD36 (+40%)+FABPpm (+36%)). Inhibition of palmitate uptake with the specific FAT/CD36 inhibitor SSO indicated that FABPpm interacts with FAT/CD36 at the plasma membrane to facilitate the uptake of palmitate. In conclusion, (1) there appears to be tissue-specific sensitivity to insulin-induced FATP1 translocation, as it has been shown elsewhere that insulin induces FATP1 translocation in 3T3-L1 adipocytes, and (2) clearly, the subcellular distribution of FABPpm, as well as FAT/CD36, is acutely regulated in cardiac myocytes, although FABPpm and FAT/CD36 do not necessarily respond identically to the same stimuli.  相似文献   

5.
The fatty acid translocase (FAT)/CD36 plays an important role in the acute regulation of fatty acid uptake in muscle tissue. We studied the subcellular distribution of FAT/CD36 in rat cardiac muscle after in vivo insulin stimulation by membrane fractionation and immunoisolation of GLUT4- and FAT/CD36-vesicles. FAT/CD36 was equally present in both plasma and microsomal membranes with no effect of insulin on the cellular distribution, whereas GLUT4 increased 2- to 3-fold in the plasma membrane. FAT/CD36 resides in one intracellular pool, whereas GLUT4 is present in two distinct pools. Immunoadsorption of GLUT4-vesicles indicated that FAT/CD36 is undetectable in these vesicles. Likewise, no GLUT4 could be detected in FAT/CD36-vesicles. These vesicles contain a high amount of Rab11 that remained unaffected after insulin stimulation, whereas Rab11 increased about 3-fold in the GLUT4-vesicles in response to insulin. These data show that GLUT4 and FAT/CD36 do not co-localize in cardiac muscle and that FAT/CD36 is not redistributed in response to insulin in the heart. Rab11 may be involved in endosomal recycling of FAT/CD36, however, insulin-associated Rab11 functions appear to be limited to GLUT4-vesicles.  相似文献   

6.
The aim of this study was to investigate the molecular mechanisms regulating FA translocase CD36 (FAT/CD36) translocation and FA uptake in skeletal muscle during contractions. In one model, wild-type (WT) and AMP-dependent protein kinase kinase dead (AMPK KD) mice were exercised or extensor digitorum longus (EDL) and soleus (SOL) muscles were contracted, ex vivo. In separate studies, FAT/CD36 translocation and FA uptake in response to muscle contractions were investigated in the perfused rat hindlimb. Exercise induced a similar increase in skeletal muscle cell surface membrane FAT/CD36 content in WT (+34%) and AMPK KD (+37%) mice. In contrast, 5-aminoimidazole-4-carboxamide ribonucleoside only induced an increase in cell surface FAT/CD36 content in WT (+29%) mice. Furthermore, in the perfused rat hindlimb, muscle contraction induced a rapid (1 min, +15%) and sustained (10 min, +24%) FAT/CD36 relocation to cell surface membranes. The increase in cell surface FAT/CD36 protein content with muscle contractions was associated with increased FA uptake, both in EDL and SOL muscle from WT and AMPK KD mice and in the perfused rat hindlimb. This suggests that AMPK is not essential in regulation of FAT/CD36 translocation and FA uptake in skeletal muscle during contractions. However, AMPK could be important in regulation of FAT/CD36 distribution in other physiological situations.  相似文献   

7.
New inhibitors of palmitoyl-CoA oxidation are based on the introduction of nitrogen heterocycles in the ‘Western Portion’ of the molecule. SAR studies led to the discovery of CVT-4325 (shown), a potent FOXi (IC50 = 380 nM rat mitochondria) with favorable PK properties (F = 93%, t1/2 = 13.6 h, dog).  相似文献   

8.
Evidence is emerging that podocytes are able to endocytose proteins such as albumin using kinetics consistent with a receptor-mediated process. To date the role of the fatty acid moiety on albumin uptake kinetics has not been delineated and the receptor responsible for uptake is yet to be identified.  相似文献   

9.
Recent studies found that the plasma membrane fatty acid transport protein CD36 also resides in mitochondrial membranes in cardiac and skeletal muscle. Pharmacological studies suggest that CD36 may play an essential role in mitochondrial fatty acid oxidation. We isolated cardiac and skeletal muscle mitochondria from wild type and CD36 knock-out mice. There were no differences between wild type and CD36 knock-out mice in mitochondrial respiration with palmitoyl-CoA, palmitoyl-carnitine or glutamate as substrate. We investigated a potential alternative role for CD36 in mitochondria, i.e. the export of fatty acids generated in the matrix. Palmitate export was not different between wild type and CD36 knock-out mice. Taken together, CD36 does not appear to play an essential role in mitochondrial uptake of fatty acids or export of fatty acid anions.  相似文献   

10.
In a selective screening for fatty acid oxidation disorders by tandem mass spectrometry, we tested the diagnostic ratios and acylcarnitine concentrations in sera or blood spots, which were reported to be specific to very long-chain acyl CoA dehydrogenase deficiency, carnitine palmitoyltransferase I deficiency, and carnitine palmitoyltransferase II deficiency. While the acylcarnitine profiles in the majority of these patients were typical in the respective disorders, some overlapping of the indices was observed between these patients and the infants, who showed symptoms mainly related to hypoglycemia but did not have the disorders mentioned above. Although the diagnostic ratio of tetradecenoylcarnitine to dodecanoylcarnitine for very long-chain acyl CoA dehydrogenase deficiency seemed to minimize the overlapping in this study, additional measures including careful assessment of clinical data and enzyme assays may be necessary for the diagnosis in atypical cases.  相似文献   

11.
We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding l-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.  相似文献   

12.
We examined the effect of Ca2+ on skeletal muscle glucose transport and fatty acid oxidation using L6 cell cultures. Ca2+ stimulation of glucose transport is controversial. We found that caffeine (a Ca2+ secretagogue) stimulation of glucose transport was only evident in a two-part incubation protocol (“post-incubation”). Caffeine was present in the first incubation, the media removed, and labeled glucose added for the second. Caffeine elicited a rise in Ca2+ in the first incubation that was dissipated by the second. This post-incubation procedure was insensitive to glucose concentrations in the first incubation. With a single, direct incubation system (all components present together) caffeine caused a slight inhibition of glucose transport. This was likely due to caffeine induced inhibition of phosphatidylinositol 3-kinase (PI3K), since nanomolar concentrations of wortmannin, a selective PI3K inhibitor, also inhibited glucose transport, and previous investigators have also found this action.We did find a Ca2+ stimulation (using either caffeine or ionomycin) of fatty acid oxidation. This was observed in the absence (but not the presence) of added glucose. We conclude that Ca2+ stimulates fatty acid oxidation at a mitochondrial site, secondary to malonyl CoA inhibition (represented by the presence of glucose in our experiments). In summary, the experiments resolve a controversy on Ca2+ stimulation of glucose transport by skeletal muscle, introduce an important experimental consideration for the measurement of glucose transport, and uncover a new site of action for Ca2+ stimulation of fatty acid oxidation.  相似文献   

13.
For ~40 years it has been widely accepted that (i) the exercise-induced increase in muscle fatty acid oxidation (FAO) is dependent on the increased delivery of circulating fatty acids, and (ii) exercise training-induced FAO up-regulation is largely attributable to muscle mitochondrial biogenesis. These long standing concepts were developed prior to the recent recognition that fatty acid entry into muscle occurs via a regulatable sarcolemmal CD36-mediated mechanism. We examined the role of CD36 in muscle fuel selection under basal conditions, during a metabolic challenge (exercise), and after exercise training. We also investigated whether CD36 overexpression, independent of mitochondrial changes, mimicked exercise training-induced FAO up-regulation. Under basal conditions CD36-KO versus WT mice displayed reduced fatty acid transport (-21%) and oxidation (-25%), intramuscular lipids (less than or equal to -31%), and hepatic glycogen (-20%); but muscle glycogen, VO(2max), and mitochondrial content and enzymes did not differ. In acutely exercised (78% VO(2max)) CD36-KO mice, fatty acid transport (-41%), oxidation (-37%), and exercise duration (-44%) were reduced, whereas muscle and hepatic glycogen depletions were accelerated by 27-55%, revealing 2-fold greater carbohydrate use. Exercise training increased mtDNA and β-hydroxyacyl-CoA dehydrogenase similarly in WT and CD36-KO muscles, but FAO was increased only in WT muscle (+90%). Comparable CD36 increases, induced by exercise training (+44%) or by CD36 overexpression (+41%), increased FAO similarly (84-90%), either when mitochondrial biogenesis and FAO enzymes were up-regulated (exercise training) or when these were unaltered (CD36 overexpression). Thus, sarcolemmal CD36 has a key role in muscle fuel selection, exercise performance, and training-induced muscle FAO adaptation, challenging long held views of mechanisms involved in acute and adaptive regulation of muscle FAO.  相似文献   

14.
Evidence is accumulating that the heavily glycosylated integral membrane protein fatty acid translocase (FAT/CD36) is involved in the transport of long-chain fatty acids across the sarcolemma of heart muscle cells. The aim of this study was to analyse the distribution between FAT/CD36 present in cardiac myocytes and endothelial cells. We therefore developed a method to purify FAT/CD36 from total rat heart and isolated cardiomyocytes, and used the proteins as standards in an immunochemical assay. Two steps, chromatography on wheat germ agglutinin-agarose and anion-exchange chromatography on Q-Sepharose fast flow, were sufficient for obtaining the protein in a > 95% pure form. When used to isolate FAT/CD36 from total heart tissue, the FAT/CD36 yield of the method was 9% and the purification factor was 64. Purifying FAT/CD36 from isolated cardiomyocytes yielded the same 88 kDa protein band on SDS-PAGE gels and reactivity of this band on western blots was comparable to that of the FAT/CD36 isolated from total hearts. Quantifying FAT/CD36 contents by western blotting showed that the amounts of FAT/CD36 that are present in isolated cardiomyocytes (10 ± 3 μg/mg protein) and total hearts (14 ± 4 μg/mg protein) are of comparable magnitude. Immunofluorescence labelling showed that at least a part of the FAT/CD36 present in the cardiomyocyte is associated with the sarcolemma. This study established that FAT/CD36 is a relatively abundant protein in the cardiomyocyte. In addition, the further developed purification procedure is the first method for isolating FAT/CD36 from rat heart and cardiomyocyte FAT/CD36.  相似文献   

15.
Fatty acids (FA) are an important energy source during exercise. In addition to its role as an energy supply for skeletal muscle, FA may activate signaling pathways that regulate gene expression. FA translocase/cluster of differentiation 36 (CD36) and G protein-coupled receptor GPR120 are long-chain FA receptors. In this study, we investigated the impact of CD36 or GPR120 deletion on energy metabolism during exercise. CD36 has been reported to facilitate cellular transport and oxidation of FA during endurance exercise. We show that CD36 deletion decreased exogenous FA oxidation during exercise, using a combination of 13C-labeled FA oxidation measurement and indirect calorimetry. In contrast, GPR120 deletion had no observable effect on energy metabolism during exercise. Our results further substantiate that CD36-mediated FA transport plays an essential role in efficient FA oxidation during exercise.  相似文献   

16.
17.
Triglyceride accumulation in skeletal muscle contributes to insulin resistance in obesity. We recently showed that alpha-lipoic acid (ALA) reduces body weight and prevents the development of diabetes in diabetes-prone obese rats by reducing triglyceride accumulation in non-adipose tissues. AMP-activated protein kinase (AMPK) is a major regulator of cellular energy metabolism. We examined whether ALA lowers triglyceride accumulation in skeletal muscle by activating AMPK. Alpha2-AMPK activity was decreased in obese rats compared to control rats. Administration of ALA to obese rats increased insulin-stimulated glucose disposal in whole body and in skeletal muscle. ALA also increased fatty acid oxidation and activated AMPK in skeletal muscle. Adenovirus-mediated administration of dominant negative AMPK into skeletal muscle prevented the ALA-induced increases in fatty acid oxidation and insulin-stimulated glucose uptake. These results suggest that ALA-induced improvement of insulin sensitivity is mediated by activation of AMPK and reduced triglyceride accumulation in skeletal muscle.  相似文献   

18.
Wan Lee 《FEBS letters》2010,584(5):968-214
C1qTNF-related proteins (CTRPs) are involved in diverse processes including metabolism, inflammation host defense, apoptosis, cell differentiation, autoimmunity, hibernation, and organogenesis. However, the physiological role of CTRP6 remains poorly understood. Here we demonstrate that the globular domain of CTRP6 mediates the phosphorylation and activation of the 5′-AMP-activated protein kinase (AMPK) in skeletal muscle cells. In parallel with the activation of AMPK, CTRP6 induces the phosphorylation of acetyl coenzyme A carboxylase (ACC) and fatty acid oxidation in myocytes. Thus, CTRP6 plays a role in fatty acid metabolism via the AMPK-ACC pathway.  相似文献   

19.
CD36, also named fatty acid translocase, has been identified as a putative membrane transporter for long-chain fatty acids (LCFA). In the heart, contraction-induced 5′ AMP-activated protein kinase (AMPK) signaling regulates cellular LCFA uptake through translocation of CD36 and possibly of other LCFA transporters from intracellular storage compartments to the sarcolemma. In this study, isolated cardiomyocytes from CD36+/+- and CD36−/− mice were used to investigate to what extent basal and AMPK-mediated LCFA uptake are CD36-dependent. Basal LCFA uptake was not altered in CD36−/− cardiomyocytes, most likely resulting from a (1.8-fold) compensatory upregulation of fatty acid-transport protein-1. The stimulatory effect of contraction-mimetic stimuli, oligomycin (2.5-fold) and dipyridamole (1.6-fold), on LCFA uptake into CD36+/+ cardiomyocytes was almost completely lost in CD36−/− cardiomyocytes, despite that AMPK signaling was fully intact. CD36 is almost entirely responsible for AMPK-mediated stimulation of LCFA uptake in cardiomyocytes, indicating a pivotal role for CD36 in mediating changes in cardiac LCFA fluxes.  相似文献   

20.
FAT/CD36 is a multifunctional glycoprotein that facilitates long-chain fatty acid (FA) uptake by cardiomyocytes and adipocytes and uptake of oxidized low density lipoproteins (oxLDL) by macrophages. CD36 also mediates FA-induced signaling to increase intracellular calcium in various cell types. The membrane-impermeable sulfo-N-hydroxysuccinimidyl (NHS) ester of oleate (SSO) irreversibly binds CD36 and has been widely used to inhibit CD36-dependent FA uptake and signaling to calcium. The inhibition mechanism and whether SSO modification of CD36 involves the FA-binding site remain unexplored. CHO cells expressing human CD36 were SSO-treated, and the protein was pulled down, deglycosylated, and resolved by electrophoresis. The CD36 band was extracted from the gel and digested for analysis by mass spectrometry. NHS derivatives react with primary or secondary amines on proteins to yield stable amide or imide bonds. Two oleoylated peptides, found only in SSO-treated samples, were identified with high contribution and confidence scores as carrying oleate modification of Lys-164. Lysine 164 lies within a predicted CD36 binding domain for FA and oxLDL. CHO cells expressing CD36 with mutated Lys-164 had impaired CD36 function in FA uptake and FA-induced calcium release from the endoplasmic reticulum, supporting the importance of Lys-164 for both FA effects. Furthermore, consistent with the importance of Lys-164 for oxLDL binding, SSO inhibited oxLDL uptake by macrophages. In conclusion, SSO accesses Lys-164 in the FA-binding site on CD36, and initial modeling of this site is presented. The data suggest competition between FA and oxLDL for access to the CD36 binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号