首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
A potential role of endotoxin–lipoprotein (bacterial lipopolysaccharide–lipoprotein, LPS–LP) complex formation as a pathogenic factor for atherosclerosis has not been studied yet. The aim of this study was to test the hypothesis that in endotoxinemia in humans hyperlipidemia associated with atherosclerosis development can favor an excessive LPS–LP complex formation, and endotoxin presented in blood can inhibit lecithin:cholesterol acyltransferase (LCAT), one of the key enzymes of reverse cholesterol transport. Endotoxin-binding capacity of lipoproteins (LP) in patients with normolipidemia and hyperlipidemia types IIa and IV was estimated from label incorporation into different LP fractions isolated by means of sequential ultracentrifugation following serum preincubation with Salmonella minnesota R595 125I-labeled LPS. The effect of varied concentrations of S. minnesota R595 LPS on LCAT activity was evaluated from the overall esterifying activity of serum using [1,2-3H2]cholesterol-labeled substrate. The elevation of low density LP (LDL) and very low density LP (VLDL) contents in blood serum in hyperlipidemia types IIa and IV, respectively, resulted in significant elevation of LPS binding to these fractions. LPS added to the blood serum leads to the dose-dependent decrease in LCAT activity. The revealed phenomena of elevated LPS binding to atherogenic LP fractions in hypercholesterolemia and endotoxin-induced LCAT inhibition suggest the pathogenic role of LPS–LP complexes in atherogenesis.  相似文献   

2.
Chronic hypothyroidism is frequently associated with atherosclerosis due to increased cholesterol plasma levels; nevertheless, the contribution of impaired reverse cholesterol transport (RCT) in this process has not been completely elucidated. The aim of this study was to evaluate the effect of thyroidectomy (Htx) upon the main stages of RCT in rats. Plasma lipid alterations induced by thyroidectomy showed a slight, but significant, reduction of total plasma triglycerides, a 300% increase of LDL-cholesterol and a 25% decrease in HDL-cholesterol compared to control rats. We evaluated the first stage of RCT determining 3H-cholesterol efflux in Fu5AH cells. The capacity of HDL obtained from Htx rats to promote cholesterol efflux was similar to that of controls. Lecithin:cholesterol acyltransferase (LCAT) activity, the second stage and the driving force of RCT was 30% lower in Htx animals compared to controls, as determined by reconstituted HDL used as an external substrate. Lipoproteins are remodeled by hepatic lipase; the mean activity of this enzyme in postheparin plasma of Htx animals was reduced by 30% compared to controls, thus suggesting an impaired HDL remodeling by this enzyme in the hypothyroid status. In contrast, lipoprotein lipase activity in the Htx group was unchanged. In summary, this study demonstrates that chronic hypothyroidism in the rat induced an impaired RCT mainly at the cholesterol esterification, and HDL remodeling mediated by hepatic lipase. The latter probably results in an abnormal HDL structure, i.e. phospholipid enrichment, which contributes to decrease HDL-apo AI fractional catabolic rates.  相似文献   

3.
High-density lipoproteins are the putative vehicles for cholesterol removal from monocyte-derived macrophages, which are an important cell type in all stages of atherosclerosis. The role of HDL2, an HDL subclass that accounts for most variation in plasma HDL-cholesterol concentration, in cholesterol metabolism in monocyte-derived macrophages is not known. In this study, the dose-dependent effects of HDL2 on cellular cholesterol mass, efflux, and esterification, and on cellular cholesteryl ester (CE) hydrolysis using the mouse macrophage P388D1 cell line was investigated. HDL2 at low concentrations (40 μg protein/ml) decreased CE content without affecting cellular free cholesterol content (FC), CE hydrolysis, or cholesterol biosynthesis. In addition, HDL2 at low concentrations reduced cellular acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and increased FC efflux from macrophages. Thus, HDL2 has two potential roles in reverse cholesterol transport. In one, HDL2 is an acceptor of macrophage FC. In the other, more novel role, HDL2 increases the availability of macrophage FC through the inhibition of ACAT. Elucidation of the mechanism by which HDL2 inhibits ACAT could identify new therapeutic targets that enhance the transfer of cholesterol from macrophages to the liver.  相似文献   

4.
5.
We investigated the in vivo metabolic fate of pre-beta HDL particles in human apolipoprotein A-I transgenic (hA-I (Tg)) mice. Pre-beta HDL tracers were assembled by incubation of [(125)I]tyramine cellobiose-labeled apolipoprotein A-I (apoA-I) with HEK293 cells expressing ABCA1. Radiolabeled pre-beta HDLs of increasing size (pre-beta1, -2, -3, and -4 HDLs) were isolated by fast-protein liquid chromatography and injected into hA-I (Tg)-recipient mice, after which plasma decay, in vivo remodeling, and tissue uptake were monitored. Pre-beta2, -3, and -4 had similar plasma die-away rates, whereas pre-beta1 HDL was removed 7-fold more rapidly. Radiolabel recovered in liver and kidney 24 h after tracer injection suggested increased (P < 0.001) liver and decreased kidney catabolism as pre-beta HDL size increased. In plasma, pre-beta1 and -2 were rapidly (<5 min) remodeled into larger HDLs, whereas pre-beta3 and -4 were remodeled into smaller HDLs. Pre-beta HDLs were similarly remodeled in vitro with control or LCAT-immunodepleted plasma, but not when incubated with phospholipid transfer protein knockout plasma. Our results suggest that initial interaction of apoA-I with ABCA1 imparts a unique conformation that partially determines the in vivo metabolic fate of apoA-I, resulting in increased liver and decreased kidney catabolism as pre-beta HDL particle size increases.  相似文献   

6.
Proprotein convertase subtilisin/kexin 9 (PCSK9), a protein regulating the number of cell-surface LDL receptors (LDLR), circulates partially associated to plasma lipoproteins. How this interaction alters PCSK9 plasma levels is still unclear. In the present study, we took advantage of the availability of a large cohort of carriers of genetic HDL disorders to evaluate how HDL defects affect plasma PCSK9 levels and its distribution among lipoproteins. Plasma PCSK9 concentrations were determined by ELISA in carriers of mutations in LCAT, ABCA1, or APOAI genes, and lipoprotein distribution was analyzed by FPLC. Carriers of one or two mutations in the LCAT gene show plasma PCSK9 levels comparable to that of unaffected family controls (homozygotes, 159.4?ng/mL (124.9;243.3); heterozygotes, 180.3?ng/mL (127.6;251.5) and controls, 190.4?ng/mL (146.7;264.4); P for trend?=?0.33). Measurement of PCSK9 in plasma of subjects carrying mutations in ABCA1 or APOAI genes confirmed normal values. When fractionated by FPLC, PCSK9 peaked in a region between LDL and HDL in control subjects. In carriers of all HDL defects, lipoprotein profile shows a strong reduction of HDL, but the distribution of PCSK9 was superimposable to that of controls. In conclusion, the present study demonstrates that in genetically determined low HDL states plasma PCSK9 concentrations and lipoprotein distribution are preserved, thus suggesting that HDL may not be involved in PCSK9 transport in plasma.  相似文献   

7.
The aim of this study was to investigate the association between C-reactive protein (CRP) gene polymorphism and metabolic syndrome (MetS) with premature coronary artery disease (PCAD). 116 patients with PCAD (58 with MetS and 58 without MetS) and 119 controls were included in the study. CRP gene + 1059 G>C polymorphism was analyzed by polymerase chain reaction. Serum hs-CRP was measured using high-sensitivity enzyme-linked immunosorbent assay. Carriers of C allele of the CRP + 1059 G>C polymorphism had 3.37 fold increased risk to develop MetS in patients with PCAD. In addition CRP gene and hs-CRP levels were independent risk factors for PCAD and MetS. The present study provides new evidence that the presence of CRP + 1059 G>C polymorphism and hs-CRP levels are independent determinants of PCAD and MetS in Egyptians. The results of our study suggest a synergistic effect of CRP C allele with classical risk factors such as hypertension, obesity, dyslipidemia and MetS.  相似文献   

8.
LCAT plays a key role in the maturation of HDL, as evidenced by low HDL-cholesterol levels in carriers of deleterious mutations in LCAT. However, the role of LCAT in atherosclerosis is unclear. We set out to study this in a prospective study. Plasma LCAT levels, which strongly correlate with LCAT activity, were measured in baseline nonfasting samples of 933 apparently healthy men and women who developed coronary artery disease (CAD) and 1,852 matched controls who remained free of CAD during 6 year follow-up. LCAT levels did not differ between cases and controls but were higher in women than men. Stratification into LCAT quartiles revealed a positive association with plasma LDL-cholesterol and triglyceride levels in the unexpected absence of an association with HDL-cholesterol. In mixed-gender analyses, the odds ratio (OR) for future CAD in the highest LCAT quartile versus the lowest was 1.00 [confidence interval (CI): 0.76–1.29, P for linearity = 0.902], although opposite trends were observed in men and women. In fact, high LCAT levels were associated with an increased CAD risk in women (unadjusted OR 1.45, CI: 0.94–2.22, P for linearity = 0.036). In contrast to our studies in carriers of LCAT mutations, the current data show that low LCAT plasma levels are not associated with increased atherosclerosis in the general population.  相似文献   

9.
C-reactive protein (CRP) has been suggested to contribute to the development of atherosclerosis. We previously found binding of CRP to cholesterol in modified low density lipoprotein (LDL) particles. Here, we characterize the interaction between CRP and cholesterol in more detail. When lipids of native LDL were separated by thin-layer chromatography, CRP bound only to cholesterol. When various cholesterol analogues were compared for their ability to bind CRP, we found that any modification of the 3beta-OH group blocked binding of CRP to cholesterol. Similarly, enrichment of LDL with cholesterol but not with its analogues triggered the binding of CRP to LDL. Finally, with the aid of anti-CRP monoclonal antibodies and by molecular modeling, we obtained evidence for involvement of the phosphorylcholine-binding site of CRP in cholesterol binding. Thus, CRP can bind to cholesterol, and the interaction is mediated by the phosphorylcholine-binding site of CRP and the 3beta-hydroxyl group of cholesterol.  相似文献   

10.
24(S)-hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces necroptosis in human neuroblastoma SH-SY5Y cells. In the present study, we investigated the mechanisms by which 24S-OHC-induced cell death occurs. We found that lipid droplets formed at the early stages in the treatment of SH-SY5Y cells with 24S-OHC. These lipid droplets could be almost completely eliminated by treatment with a specific inhibitor or by siRNA knockdown of acyl-CoA:cholesterol acyltransferase 1 (ACAT1). In association with disappearance of lipid droplets, cell viability was recovered by treatment with the inhibitor or siRNA for ACAT1. Using gas chromatography–mass spectrometry, we confirmed that 24S-OHC-treated cells exhibited accumulation of 24S-OHC esters but not of cholesteryl esters and confirmed that accumulation of 24S-OHC esters was reduced when ACAT1 was inhibited. 24S-OHC induced apoptosis in T-lymphoma Jurkat cells, which endogenously expressed caspase-8, but did not induce apoptosis in SH-SY5Y cells, which expressed no caspase-8. In Jurkat cells treated with the pan-caspase inhibitor ZVAD and in caspase-8-deficient Jurkat cells, 24S-OHC was found to induce caspase-independent cell death, and this was partially but significantly inhibited by Necrostatin-1. Similarly, knockdown of receptor-interacting protein kinase 3, which is one of the essential kinases for necroptosis, significantly suppressed 24S-OHC-induced cell death in Jurkat cells treated with ZVAD. These results suggest that 24S-OHC can induce apoptosis or necroptosis, which of the two is induced being determined by caspase activity. Regardless of the presence or absence of ZVAD, 24S-OHC treatment induced the formation of lipid droplets and cell death in Jurkat cells, and this was suppressed by treatment with ACAT1 inhibitor. Collectively, these results suggest that it is ACAT1-catalyzed 24S-OHC esterification and the resulting lipid droplet formation that is the initial key event which is responsible for 24S-OHC-induced cell death.  相似文献   

11.
The specifics of nascent HDL remodeling within the plasma compartment remain poorly understood. We developed an in vitro assay to monitor the lipid transfer between model nascent HDL (LpA-I) and plasma lipoproteins. Incubation of α-125I-LpA-I with plasma resulted in association of LpA-I with existing plasma HDL, whereas incubation with TD plasma or LDL resulted in conversion of α-125I-LpA-I to preβ-HDL. To further investigate the dynamics of lipid transfer, nascent LpA-I were labeled with cell-derived [3 H]cholesterol (UC) or [3H]phosphatidylcholine (PC) and incubated with plasma at 37°C. The majority of UC and PC were rapidly transferred to apolipoprotein B (apoB). Subsequently, UC was redistributed to HDL for esterification before being returned to apoB. The presence of a phospholipid transfer protein (PLTP) stimulator or purified PLTP promoted PC transfer to apoB. Conversely, PC transfer was abolished in plasma from PLTP−/− mice. Injection of 125I-LpA-I into rabbits resulted in a rapid size redistribution of 125I-LpA-I. The majority of [3H]UC from labeled r(HDL) was esterified in vivo within HDL, whereas a minority was found in LDL. These data suggest that apoB plays a major role in nascent HDL remodeling by accepting their lipids and donating UC to the LCAT reaction. The finding that nascent particles were depleted of their lipids and remodeled in the presence of plasma lipoproteins raises questions about their stability and subsequent interaction with LCAT.  相似文献   

12.
《Phytomedicine》2014,21(12):1504-1508
PurposeThe effects of Portulaca oleracea (Po) lyophilized aqueous extract were determined on the serum high-density lipoproteins (HDL2 and HDL3) amounts and composition, as well as on lecithin: cholesterol acyltansferase (LCAT) activity.MethodsMale Wistar rats (n = 12) were fed on 1% cholesterol-enriched diet for 10 days. After this phase, hypercholesterolemic rats (HC) were divided into two groups fed the same diet supplemented or not with Portulaca oleracea (Po-HC) (0.5%) for four weeks.ResultsSerum total cholesterol (TC) and triacylglycerols (TG), and liver TG values were respectively 1.6-, 1.8-, and 1.6-fold lower in Po-HC than in HC group. Cholesterol concentrations in LDL-HDL1, HDL2, and HDL3 were respectively 1.8, 1.4-, and 2.4-fold decreased in Po-HC group. HDL2 and HDL3 amounts, which were the sum of apolipoproteins (apos), TG, cholesteryl esters (CE), unesterified cholesterol (UC), and phospholipids (PL) contents, were respectively 4.5-fold higher and 1.2-fold lower with Po treatment. Indeed, enhanced LCAT activity (1.2-fold), its cofactor-activator apo A-I (2-fold) and its reaction product HDL2-CE (2.1-fold) were observed, whereas HDL3-PL (enzyme substrate) and HDL3-UC (acyl group acceptor) were 1.2- and 2.4-fold lower.ConclusionPortulaca oleracea reduces triglyceridemia, cholesterolemia, and improves reverse cholesterol transport in rat fed enriched-cholesterol diet, contributing to anti-atherogenic effects.  相似文献   

13.
14.
Apolipoprotein (apo) C-III is a marker protein of triacylglycerol (TG)-rich lipoproteins and high-density lipoproteins (HDL), and has been proposed as a risk factor of coronary heart disease. To compare the physiologic role of reconstituted HDL (rHDL) with or without apoC-III, we synthesized rHDL with molar ratios of apoA-I:apoC-III of 1:0, 1:0.5, 1:1, and 1:2. Increasing the apoC-III content in rHDL produced smaller rHDL particles with a lower number of apoA-I molecules. Furthermore, increasing the molar ratio of apoC-III in rHDL enhanced the surfactant-like properties and the ability to lyse dimyristoyl phosphatidylcholine. Furthermore, rHDL containing apoC-III was found to be more resistant to particle rearrangement in the presence of low-density lipoprotein (LDL) than rHDL that contained apoA-I alone. In addition, the lecithin:cholesterol acyltransferase (LCAT) activation ability was reduced as the apoC-III content of the rHDL increased; however, the CE transfer ability was not decreased by the increase of apoC-III. Finally, rHDL containing apoC-III aggravated the production of MDA in cell culture media, which led to increased cellular uptake of LDL. Thus, the addition of apoC-III to rHDL induced changes in the structural and functional properties of the rHDL, especially in particle size and rearrangement and LCAT activation. These alterations may lead to beneficial functions of HDL, which is involved in anti-atherogenic properties in the circulation.  相似文献   

15.
To evaluate functional and compositional properties of HDL in subjects from a kindred of genetic apoA-I deficiency, two homozygotes and six heterozygotes, with a nonsense mutation at APOA1 codon -2, Q[-2]X, were recruited together with age- and sex-matched healthy controls (n = 11). Homozygotes displayed undetectable plasma levels of apoA-I and reduced levels of HDL-cholesterol (HDL-C) and apoC-III (5.4% and 42.6% of controls, respectively). Heterozygotes displayed low HDL-C (21 ± 9 mg/dl), low apoA-I (79 ± 24 mg/dl), normal LDL-cholesterol (132 ± 25 mg/dl), and elevated TG (130 ± 45 mg/dl) levels. Cholesterol efflux capacity of ultracentrifugally isolated HDL subpopulations was reduced (up to −25%, P < 0.01, on a glycerophospholipid [GP] basis) in heterozygotes versus controls. Small, dense HDL3 and total HDL from heterozygotes exhibited diminished antioxidative activity (up to −48%, P < 0.001 on a total mass basis) versus controls. HDL subpopulations from both homozygotes and heterozygotes displayed altered chemical composition, with depletion in apoA-I, GP, and cholesteryl ester; enrichment in apoA-II, free cholesterol, and TG; and altered phosphosphingolipidome. The defective atheroprotective activities of HDL were correlated with altered lipid and apo composition. These data reveal that atheroprotective activities of HDL particles are impaired in homozygous and heterozygous apoA-I deficiency and are intimately related to marked alterations in protein and lipid composition.  相似文献   

16.
Nicotinic acid is a commonly used anti-dyslipidemic agent that increases plasma levels of HDL-cholesterol and decrease triglycerides (TG), and VLDL- and LDL-cholesterol. The most well-studied effect of nicotinic acid is its ability to lower plasma free fatty acids, which has been observed in humans and many animal models. However, its ability to raise HDL in humans has not been replicated in animal models, which precludes studying the mechanism of HDL elevation. Here we studied lipid-modulating effects of nicotinic acid in mice carrying genomic DNA fragments that drive expression of various human genes in the mouse liver. Treatment with nicotinic acid reduced serum levels of HDL cholesterol in wild-type and human apolipoprotein B100 (apoB100)-transgenic mice. In contrast, nicotinic acid treatment of mice that express human cholesteryl ester transfer protein (CETP), with or without concomitant apoB100 expression, resulted in a significant increase of HDL cholesterol and reduction of TG, VLDL- and LDL-cholesterol. These data demonstrate a critical role of CETP in nicotinic acid-mediated HDL elevation, and suggest that mice carrying the human CETP gene may be useful animal models for studying the HDL-elevating effect of nicotinic acid.  相似文献   

17.
This work demonstrated the effect of two salts as potential simple formulation excipients in modifying hydration properties, phase behavior, and protein release from lecithin-based implants. In vitro release of a model protein, bovine serum albumin (BSA), from cylindrical-shaped lecithin and lecithin:cholesterol (1:1 w/w) implants containing 0, 10, or 30% w/w NaCl or CaCl2 was studied. In the absence of salts, BSA was released from lecithin and lecithin:cholesterol implants with a high monomer content and the release profiles were similar to those previously reported. Cholesterol increased the swelling, induced the formation of myelin structures, and reduced BSA release from the matrices. Addition of the salts to lecithin:cholesterol implants further enhanced the swelling, altered the hydrated morphology, and inhibited protein release. Analyses showed that BSA associated into multimers within these swollen lipid matrices but retained a high degree of protein native structure. Factors that may have contributed to the inhibition of the in vitro release included 1) the swollen multilamellar layers assembled as diffusional barriers, 2) adsorption of BSA onto the hydrated lipid vesicles, and 3) formation of protein aggregates.  相似文献   

18.
In a patient with lecithin: cholesterol acyltransferase deficiency, free cholesterol was markedly increased, and esterified cholesterol was diminished. In the patient's plasma, an increase in phosphatidylcholine (PC) and a decrease in sphingomyelin were observed. Concomitantly, an increase in a shorter acyl chain 16:0 was noted in PC, sphingomyelin and phosphatidylethanolamine (PE). In contrast to these results, longer chains such as 22:0 and 24:0 were decreased, especially in sphingomyelin. Unsaturated double bonds such as 18:1 was also increased in PC and PE. In the red-cell membrane lipids, the increase in free cholesterol was counteracted by an increase in PC and by a decrease in sphingomyelin and PE, reflecting changes in the patient's plasma lipids. Increased 16:0 (in PC) and decreased 18:0 and 24:0 were observed. The increased plasma free cholesterol due to metabolic defect (lecithin:cholesterol acyltransferase deficiency) led to decreased red-cell membrane fluidity. This effect appeared to be counteracted by changing phospholipid composition (increased PC and decreased sphingomyelin and PE), by increasing shorter chains (16:0), by decreasing longer chains (18:0 and 24:0) and by increasing unsaturated double bonds (18:2). These results can be interpreted as a self-adaptive modification of lecithin:cholesterol acyltransferase deficiency-induced red-cell membrane abnormalities, to maintain normal membrane fluidity. This speculation was supported by the ESR spin-label studies on the patient's membrane lipids. The normal order parameters in intact red cells and in total lipid liposomes were decreased if cholesterol-depleted membrane liposomes were prepared. Thus, the hardening effect of cholesterol appeared to be counteracted by the softening effects described above. Overall membrane fluidity in intact red cells of the lecithin:cholesterol acyltransferase-deficient patient was maintained normally, judged by order parameters in ESR spin-label studies.  相似文献   

19.
20.
Aging is one of major risk factors for developing hypercholesterolemia. To elucidate the cholesterol-lowering mechanism exerted by rice protein (RP), the effects on hepatic cholesterol outputs and cholesterol metabolism related enzymes were investigated in adult rats, which were fed by casein (CAS) and RP without cholesterol in diets. After 2 weeks of feeding, the significant cholesterol-lowering effect was observed in adult rats fed by RP compared to CAS. The hepatic total- and VLDL-cholesterol secretions into circulation were significantly depressed in RP group, whereas biliary outputs of bile acids and cholesterol were effectively stimulated by RP-feeding, causing an increase in fecal sterol excretion compared to CAS. As a result, the apparent cholesterol absorption was significantly inhibited by RP. RP-feeding significantly increased the activity and gene expression of cholesterol 7α-hydroxylase, whereas acyl-CoA:cholesterol acyltransferase-2 activity and gene expression were significantly decreased by RP as compared with CAS. Neither activity nor gene expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase of RP did differ from CAS in the liver. The present study demonstrates that rice protein can prevent hypercholesterolemia through modifying hepatic cholesterol metabolism under cholesterol-free dietary condition. The findings suggest that hypocholesterolemic action induced by rice protein is attributed in part to the inhibition of cholesterol absorption during the adult period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号