首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported a novel homozygous 4-bp deletion in DDHD1 as the responsible variant for spastic paraplegia type 28 (SPG28; OMIM#609340). The variant causes a frameshift, resulting in a functionally null allele in the patient. DDHD1 encodes phospholipase A1 (PLA1) catalyzing phosphatidylinositol to lysophosphatidylinositol (LPI). To clarify the pathogenic mechanism of SPG28, we established Ddhd1 knockout mice (Ddhd1[−/−]) carrying a 5-bp deletion in Ddhd1, resulting in a premature termination of translation at a position similar to that of the patient. We observed a significant decrease in foot–base angle (FBA) in aged Ddhd1(−/−) (24 months of age) and a significant decrease in LPI 20:4 (sn-2) in Ddhd1(−/−) cerebra (26 months of age). These changes in FBA were not observed in 14 months of age. We also observed significant changes of expression levels of 22 genes in the Ddhd1(−/−) cerebra (26 months of age). Gene Ontology (GO) terms relating to the nervous system and cell–cell communications were significantly enriched. We conclude that the reduced signaling of LPI 20:4 (sn-2) by PLA1 dysfunction is responsible for the locomotive abnormality in SPG28, further suggesting that the reduction of downstream signaling such as GPR55 which is agonized by LPI is involved in the pathogenesis of SPG28.  相似文献   

2.
In mouse neuroblastoma N18TG2 cells prelabeled with [3H]arachidonic acid ([3H]AA) the biosynthesis of 2-arachidonoylglycerol (2-AG) is induced by ionomycin in a fashion sensitive to an inhibitor of diacylglycerol (DAG) lipase, RHC 80267, but not to four different phospholipase C (PLC) blockers. Pulse experiments with [3H]AA showed that ionomycin stimulation leads to the sequential formation of [3H]phosphatidic acid ([3H]PA), [3H]DAG, and [3H]2-AG. [3H]2-AG biosynthesis in N18TG2 cells prelabeled with [3H]AA was counteracted by propranolol and N-ethylmaleimide, two inhibitors of the Mg2+/Ca2(+)-dependent brain PA phosphohydrolase. Pretreatment of cells with exogenous phospholipase D (PLD) led to a strong potentiation of ionomycin-induced [3H]2-AG formation. These data indicate that DAG precursors for 2-AG in intact N18TG2 cells are obtained from the hydrolysis of PA and not through the activation of PLC. The presence of 2% ethanol during ionomycin stimulation failed to elicit the synthesis of [3H]phosphatidylethanol and did not counteract the formation of [3H]PA, thus arguing against the activation of PLD by the Ca2+ ionophore. Selective inhibitors of secretory phospholipase A2 and the acyl-CoA acylase inhibitor thimerosal significantly reduced [3H]2-AG biosynthesis. The implications of these latter findings, and of the PA-dependent pathways of 2-AG formation described here, are discussed.  相似文献   

3.
In rat luteal cells labeled with (3H]oleic acid, PGF-stimulated phospholipase D (PLD) activation was investigated. The PLD activity was detected by measuring the accumulation of [3H]phosphatidylethanol (PtdEt) in the presence of ethanol. PGF stimulated PtdEt accumulation at concentrations of more than 100 nM in the presence of ethanol. However, PtdEt accumulation did not change in the absence of ethanol. PGF (1 μM) increased PtdEt accumulation after 1 min, and the accumulation reached a plateau by 2–3 min. These results indicate that PGF activates PLD in rat luteal cells. U-73122, a phospholipase C (PLC) inhibitor, and staurosporine, a protein kinase C (PKC) inhibitor, did not inhibit PGF-stimulated [3H]PtdEt accumulation. These results suggest that PGF-induced PLD activation is different from PLC-PKC systems. We reported previously that PGF stimulated the release of arachidonic acid. The effects of indomethacin, nordihydroguaiaretic acid (NDGA), and 5,8,11,14-eicosatetraynoic acid (ETYA), inhibitors of arachidonic acid metabolism, on PGF-stimulated PtdEt accumulation were examined. Pretreatment with indomethacin enhanced PGF-induced PtdEt accumulation. In contrast, pretreatment with NDGA and ETYA inhibited PGF-induced PtdEt accumulation. It is suggested that PGF-stimulated PLD activation is mediated via lipoxygenase products.  相似文献   

4.
Phospholipase A1 (PLA1) hydrolyzes the fatty acids of glycerophospholipids, which are structural components of the cellular membrane. Genetic mutations in DDHD1, an intracellular PLA1, result in hereditary spastic paraplegia (HSP) in humans. However, the regulation of DDHD1 activity has not yet been elucidated in detail. In the present study, we examined the phosphorylation of DDHD1 and identified the responsible protein kinases. We performed MALDI-TOF MS/MS analysis and Phos-tag SDS-PAGE in alanine-substitution mutants in HEK293 cells and revealed multiple phosphorylation sites in human DDHD1, primarily Ser8, Ser11, Ser723, and Ser727. The treatment of cells with a protein phosphatase inhibitor induced the hyperphosphorylation of DDHD1, suggesting that multisite phosphorylation occurred not only at these major, but also at minor sites. Site-specific kinase-substrate prediction algorithms and in vitro kinase analyses indicated that cyclin-dependent kinase CDK1/cyclin A2 phosphorylated Ser8, Ser11, and Ser727 in DDHD1 with a preference for Ser11 and that CDK5/p35 also phosphorylated Ser11 and Ser727 with a preference for Ser11. In addition, casein kinase CK2α1 was found to phosphorylate Ser104, although this was not a major phosphorylation site in cultivated HEK293 cells. The evaluation of the effects of phosphorylation revealed that the phosphorylation mimic mutants S11/727E exhibit only 20% reduction in PLA1 activity. However, the phosphorylation mimics were mainly localized to focal adhesions, whereas the phosphorylation-resistant mutants S11/727A were not. This suggested that phosphorylation alters the subcellular localization of DDHD1 without greatly affecting its PLA1 activity.  相似文献   

5.
The unicellular green alga Chlamydomonas has frequently been used as a eukaryotic model system to study intracellular phospholipid signaling pathways in response to environmental stresses. Earlier, we found that hypersalinity induced a rapid increase in the putative lipid second messenger, phosphatidic acid (PA), which was suggested to be generated via activation of a phospholipase D (PLD) pathway and the combined action of a phospholipase C/diacylglycerol kinase (PLC/DGK) pathway. Lysophosphatidic acid (LPA) was also increased and was suggested to reflect a phospholipase A2 (PLA2) activity based on pharmacological evidence. The question of PA''s and LPA''s origin is, however, more complicated, especially as both function as precursors in the biosynthesis of phospho- and galactolipids. To address this complexity, a combination of fatty acid-molecular species analysis and in vivo 32P-radiolabeling was performed. Evidence is provided that LPA is formed from a distinct pool of PA characterized by a high α-linolenic acid (18:3n-3) content. This molecular species was highly enriched in the polyphosphoinositide fraction, which is the substrate for PLC to form diacylglycerol. Together with differential 32P-radiolabeling studies and earlier PLD-transphosphatidylation and PLA2-inhibitor assays, the data were consistent with the hypothesis that the salt-induced LPA response is primarily generated through PLA2-mediated hydrolysis of DGK-generated PA and that PLD or de novo synthesis [via endoplasmic reticulum - or plastid-localized routes] is not a major contributor.  相似文献   

6.
Phosphatidic acid has been proposed to contribute to the mitogenic actions of various growth factors. In32P-labeled neonatal rat cardiac fibroblasts, 100 nM [Sar1]angiotensin II was shown to rapidly induce formation of32P-phosphatidic acid. Levels peaked at 5 min (1.5-fold above control), but were partially sustained over 2 h. Phospholipase D contributed in part to phosphatidic acid formation, as32P- or3H-phosphatidylethanol was produced when cells labeled with [32P]H3PO4 or 1-O-[1,2-3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine were stimulated in the presence of 1% ethanol. [Sar1]angiotensin II-induced phospholipase D activity was transient and mainly mediated through protein kinase C (PKC), since PKC downregulation reduced phosphatidylethanol formation by 68%. Residual activity may have been due to increased intracellular Ca2+, as ionomycin also activated phospholipase D in PKC-depleted cells. Phospholipase D did not fully account for [Sar1]angiotensin II-induced phosphatidic acid: 1) compared to PMA, a potent activator of phospholipase D, [Sar1]angiotensin II produced more phosphatidic acid relative to phosphatidylethanol, and 2) PKC downregulation did not affect [Sar1]angiotensin II-induced phosphatidic acid formation. The diacylglycerol kinase inhibitor R59949 depressed [Sar1]angiotensin II-induced phosphatidic acid formation by only 21%, indicating that activation of a phospholipase C and diacylglycerol kinase also can not account for the bulk of phosphatidic acid. Thus, additional pathways not involving phospholipases C and D, such asde novo synthesis, may contribute to [Sar1]angiotensin II-induced phosphatidic acid in these cells. Finally, as previously shown for [Sar1]angiotensin II, phosphatidic acid stimulated mitogen activated protein (MAP) kinase activity. These results suggest that phosphatidic acid may function as an intracellular second messenger of angiotensin II in cardiac fibroblasts and may contribute to the mitogenic action of this hormone on these cells. (Mol Cell Biochem141: 135–143, 1994)Abbreviations DAG diacylglycerol - DMSO dimethyl sulfoxide - lysoPC 1-O-hexadecyl-2-lyso-sn-glycero-3-phosphocholine - NRCF newborn rat cardiac fibroblasts - PA phosphatidic acid - PAPase phosphatidic acid phosphohydrolase - PC phosphatidylcholine - PEt phosphatidylethanol - PI phosphatidylinositol - PL (labeled) phospholipids - PLC phospholipase C - PLD phospholipase D Drs. G. W. Booz and M. M. Taher contributed equally to the work described here.  相似文献   

7.
Patterns of arachidonic acid release and metabolism were altered in human synovial fibroblasts following exposure to cytokines. Recombinant interleukin-1 induced an approximate 3-fold in crease in [3H]-AA release, a 7-fold increase in PGE2 production and a 2-fold increase in PLA2 activity in human synovial fibroblasts. Recombinant tumor necrosis factor induced similar responses, however, the magnitude was less than that mediated by interleukin-1. A combination of the two cytokines had an additive effect on [3H]-AA release and PLA2 activity while PGE2 production was similar to that detected using interleukin-1 alone. [3H]-AA, was released in substantial amounts when sodium fluoride was used as a stimulus but PGE2 was not. These data show that tumor necrosis factor and interleukin-1 can both activate synovial cell PLA2 and induce generation of PGE2, but act in an additive rather than a synergistic fashion. Furthermore, the data show that PGE2 production is not always concordant with [3H]-AA release, suggesting that appropriate enzyme(s) must be activated.  相似文献   

8.
This study investigated how modulation of intracellular calcium alters the functional activity of the EAAC1 glutamate transporter in C6 glioma cells. Pre-incubation of C6 glioma cells with the endoplasmic reticulum Ca2+ ATP pump inhibitor, thapsigargin (10 μM) produced a time-dependent increase in the Vmax for d-[3H]aspartate transport that reached a maximum at 15 min (143% of control; P < 0.001) that was accompanied by increased plasma membrane expression of EAAC1 and was blocked by inhibition of protein kinase C. Pre-incubation of C6 glioma cells with phorbol myristate-3-acetate (100 nM for 20 min) also caused a significant increase in the Vmax of sodium-dependent d-[3H]aspartate transport (190% of control; P < 0.01). In contrast, in the absence of extracellular calcium, thapsigargin caused a significant inhibition in d-[3H]aspartate transport that was not mediated by protein kinase C. Blockade of store-operated calcium channels with 2-aminoethoxydiphenyl borate (50 μM) or SKF 96365 (10 μM) caused a net inhibition of d-[3H]aspartate uptake. Co-incubation of C6 glioma cells with both thapsigargin and 2-aminoethoxydiphenyl borate (but not SKF 96365) prevented the increase in d-[3H]aspartate transport that was observed in the presence of thapsigargin alone. Furthermore, 2-aminoethoxydiphenyl borate, but not SKF 96365, reduced the increase in intracellular calcium that occurred following pre-incubation of the cells with thapsigargin. It is concluded that, in C6 glioma cells, stimulation of EAAC1-mediated glutamate transport by thapsigargin is dependent on entry of calcium via the NSCC-1 subtype of store operated calcium channel and is mediated by protein kinase C. In contrast, in the absence of store operated calcium entry, thapsigargin inhibits transport.  相似文献   

9.
We provided evidence that calcium-calmodulin plays a major role in bradykinin-induced arachidonic acid release by bovine aortic endothelial cells. In cells labeled for 16 hr with 3H-arachidonic acid, ionomycin and Ca2+-mobilizing hormones such as bradykinin, thrombin and platelet activating factor induced arachidonic acid release. However, arachidonic acid release was not induced by agents known to increase cyclic AMP (forskolin, isoproterenol) or cyclic GMP (sodium nitroprusside). Bradykinin induced the release of arachidonic acid in a dose-dependent manner (EC50 = 1.6 ± 0.7 nM). This increase was rapid, reaching a maximal value of fourfold above basal level in 15 min. In a Ca2+-free medium, bradykinin was still able to release arachidonic acid but with a lower efficiency. Quinacrine (300 μM), a blocker of PLA2, completely inhibited bradykinin-induced arachidonic acid release. The B2 bradykinin receptor antagonist HOE-140 completely inhibited bradykinin-induced arachidonic acid release. The B1-selective agonist DesArg9-bradykinin was inactive and the B1-selective antagonist [Leu8]DesArg9-bradykinin had no significant effect on bradykinin-induced arachidonic acid release. The phospholipase C inhibitor U-73122 (100 μM) decreased bradykinin-induced arachidonic acid release. The calmodulin inhibitor W-7 (50 μM) drastically reduced the bradykinin- and ionomycin-induced arachidonic acid release. Also, forskolin decreased bradykinin-induced arachidonic acid release. These results suggest that the activation of PLA2 by bradykinin in BAEC is a direct consequence of phospholipase C activation. Ca2+-calmodulin appears to be the prominent activator of PLA2 in this system. © 1996 Wiley-Liss, Inc.  相似文献   

10.

Background

Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle.

Methods

Hyperpolarized [1-13C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The 13C magnetic resonance signals of [1-13C]acetate and [1-13C]acetylcarnitine were recorded in vivo for 1 min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3 s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios.

Results

Although separated by two biochemical transformations, a kinetic analysis of the 13C label flow from [1-13C]acetate to [1-13C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM = 0.35 ± 0.13 mM and Vmax = 0.199 ± 0.031 μmol/g/min.

Conclusions

The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results.

General significance

This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.  相似文献   

11.
This research examines the in vitro interaction of phthalate diesters and monoesters with the G protein-coupled cannabinoid 1 (CB1) receptor, a presynaptic complex involved in the regulation of synaptic activity in mammalian brain. The diesters, n-butylbenzylphthalate (nBBP), di-n-hexylphthalate (DnHP), di-n-butylphthalate (DnBP), di-2-ethylhexylphthalate (DEHP), di-isooctylphthalate (DiOP) and di-n-octylphthalate (DnOP) inhibited the specific binding of the CB1 receptor agonist [3H]CP-55940 to mouse whole brain membranes at micromolar concentrations (IC50s: nBBP 27.4 μM; DnHP 33.9 μM; DnBP 45.9 μM; DEHP 47.4 μM; DiOP 55.4 μM; DnOP 75.2 μM). DnHP, DnBP and nBBP achieved full (or close to full) blockade of [3H]CP-55940 binding, whereas DEHP, DiOP and DnOP produced partial (55-70%) inhibition. Binding experiments with phenylmethane-sulfonylfluoride (PMSF) indicated that the ester linkages of nBBP and DnBP remain intact during assay. The monoesters mono-2-ethylhexylphthalate (M2EHP) and mono-isohexylphthalate (MiHP) failed to reach IC50 at 150 μM and mono-n-butylphthalate (MnBP) was inactive. Inhibitory potencies in the [3H]CP-55940 binding assay were positively correlated with inhibition of CB1 receptor agonist-stimulated binding of [35S]GTPγS to the G protein, demonstrating that phthalates cause functional impairment of this complex. DnBP, nBBP and DEHP also inhibited binding of [3H]SR141716A, whereas inhibition with MiHP was comparatively weak and MnBP had no effect. Equilibrium binding experiments with [3H]SR141716A showed that phthalates reduce the Bmax of radioligand without changing its Kd. DnBP and nBBP also rapidly enhanced the dissociation of [3H]SR141716A. Our data are consistent with an allosteric mechanism for inhibition, with phthalates acting as relatively low affinity antagonists of CB1 receptors and cannabinoid agonist-dependent activation of the G-protein. Further studies are warranted, since some phthalate esters may have potential to modify CB1 receptor-dependent behavioral and physiological outcomes in the whole animal.  相似文献   

12.
Abstract: In [3H]myristic acid-prelabeled Chinese hamster ovary cells stably expressing the rat NK1 tachykinin receptor, the selective NK1 agonist [Pro9]substance P ([Pro9]SP) time and concentration dependently stimulated the formation of [3H]phosphatidylethanol in the presence of ethanol. This [Pro9]SP-induced activation of phospholipase D (PLD) was blocked by NK1 receptor antagonists and poorly or not mimicked by NK2 and NK3 agonists, respectively. In confirmation of previous observations, [Pro9]SP also stimulated the hydrolysis of phosphoinositides, the release of arachidonic acid, and the formation of cyclic AMP (cAMP). All these [Pro9]SP-evoked responses could be mimicked by aluminum fluoride, but they remained unaffected in cells pretreated with pertussis toxin, suggesting that a Gi/Go protein is not involved in these different signaling pathways. The activation of PLD by [Pro9]SP was sensitive to external calcium and required an active protein kinase C because the inhibition of this kinase (Ro 31-8220) or its down-regulation (long-term treatment with a phorbol ester) abolished the response. In contrast, a cAMP-dependent process was not involved in the activation of PLD because the [Pro9]SP-evoked response was neither affected by Rp-8-bromoadenosine 3′,5′-cyclic monophosphorothioate nor mimicked by cAMP-generating compounds (cholera toxin or forskolin) or by 8-bromo-cyclic AMP. A functional coupling of NK1 receptors to PLD was also demonstrated in the human astrocytoma cell line U 373 MG stimulated by SP or [Pro9]SP. These results suggest that PLD activation could be an additional signaling pathway involved in the mechanism of action of SP in target cells expressing NK1 receptors.  相似文献   

13.
We have shown previously that the phospholipase A (PLA) activity specific for phosphatidic acid (PA) in porcine platelet membranes is of the A1 type (PA-PLA1) [J. Biol. Chem. 259 (1984) 5083]. In the present study, the PA-PLA1 was solubilized in Triton X-100 from membranes pre-treated with 1 M NaCl, and purified 280-fold from platelet homogenates by sequential chromatography on blue-Toyopearl, red-Toyopearl, DEAE-Toyopearl, green-agarose, brown-agarose, polylysine-agarose, palmitoyl-CoA-agarose and blue-5PW columns. In the presence of 0.1% Triton X-100 in the assay mixture, the partially purified enzyme hydrolyzed the acyl group from the sn-1 position of PA independently of Ca2+ and was highly specific for PA; phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) were poor substrates. The enzyme exhibited lysophospholipase activity for l-acyl-lysoPA at 7% of the activity for PA hydrolysis but no lipase activity was observed for triacylglycerol (TG) and diacylglycerol (DG). At 0.025% Triton X-100, the enzyme exhibited the highest activity, and PA was the best substrate, but PE was also hydrolyzed substantially. The partially purified PA-PLA1 in porcine platelet membranes was shown to be different from previously purified and cloned phospholipases and lipases by comparing the sensitivities to a reducing agent, a serine-esterase inhibitor, a PLA2 inhibitor, a Ca2+-independent phospholipase A2 inhibitor, and a DG lipase inhibitor.  相似文献   

14.
The product of the LPP1 gene in Saccharomyces cerevisiae is a membrane-associated enzyme that catalyzes the Mg2+-independent dephosphorylation of phosphatidate (PA), diacylglycerol pyrophosphate (DGPP), and lysophosphatidate (LPA). The LPP1-encoded lipid phosphatase was overexpressed 681-fold in Sf-9 insect cells and used to examine the enzymological properties of the enzyme using PA, DGPP, and LPA as substrates. The optimum pH values for PA phosphatase, DGPP phosphatase, and LPA phosphatase activities were 7.5, 7.0, and 7.0, respectively. Divalent cations (Mn2+, Co2+, and Ca2+), NaF, heavy metals, propranolol, phenylglyoxal, and N-ethylmaleimide inhibited the PA phosphatase, DGPP phosphatase, and LPA phosphatase activities of the enzyme. The inhibitory effects of N-ethylmaleimide and phenylglyoxal on the LPP1-encoded enzyme were novel properties when compared with other Mg2+-independent lipid phosphate phosphatases from S. cerevisiae and mammalian cells. The LPP1-encoded enzyme exhibited saturation kinetics with respect to the surface concentrations of PA (Km=0.05 mol%), DGPP (Km=0.07 mol%), and LPA (Km=0.08 mol%). Based on specificity constants (Vmax/Km), the order of substrate preference was PA (4.2 units/mg/mol%)>DGPP (3.5 units/mg/mol%)>LPA (1.3 units/mg/mol%). DGPP (Ki=0.12 mol%) was a competitive inhibitor with respect to PA, and PA (Ki=0.12 mol%) was a competitive inhibitor with respect to DGPP. This suggested that the binding sites for these substrates were the same. The enzymological properties of the LPP1-encoded enzyme differed significantly from those of the S. cerevisiae DPP1-encoded lipid phosphatase, a related enzyme that also utilizes PA, DGPP, and LPA as substrates.  相似文献   

15.
Phospholipase D (PLD), a phospholipid phosphohydrolase, catalyzes the hydrolysis of phosphatidylcholine and other membrane phospholipids to phosphatidic acid (PA) and choline. PLD, ubiquitous in mammals, is a critical enzyme in intracellular signal transduction. PA generated by agonist- or reactive oxygen species (ROS)-mediated activation of the PLD1 and PLD2 isoforms can be subsequently converted to lysoPA (LPA) or diacylglycerol (DAG) by phospholipase A1/A2 or lipid phosphate phosphatases. In pulmonary epithelial and vascular endothelial cells, a wide variety of agonists stimulate PLD and involve Src kinases, p-38 mitogen activated protein kinase, calcium and small G proteins. PA derived from the PLD pathway has second messenger functions. In endothelial cells, PA regulates NAD[P]H oxidase activity and barrier function. In airway epithelial cells, sphingosine-1-phosphate and PA-induced IL-8 secretion and ERK1/2 phosphorylation is regulated by PA. PA can be metabolized to LPA and DAG, which function as first- and second-messengers, respectively. Signaling enzymes such as Raf 1, protein kinase C and type I phosphatidylinositol-4-phosphate 5-kinase are also regulated by PA in mammalian cells. Thus, PA and its metabolic products play a central role in modulating endothelial and epithelial cell functions.  相似文献   

16.
GPR55 is activated by l-α-lysophosphatidylinositol (LPI) but also by certain cannabinoids. In this study, we investigated the GPR55 pharmacology of various cannabinoids, including analogues of the CB1 receptor antagonist Rimonabant®, CB2 receptor agonists, and Cannabis sativa constituents. To test ERK1/2 phosphorylation, a primary downstream signaling pathway that conveys LPI-induced activation of GPR55, a high throughput system, was established using the AlphaScreen® SureFire® assay. Here, we show that CB1 receptor antagonists can act both as agonists alone and as inhibitors of LPI signaling under the same assay conditions. This study clarifies the controversy surrounding the GPR55-mediated actions of SR141716A; some reports indicate the compound to be an agonist and some report antagonism. In contrast, we report that the CB2 ligand GW405833 behaves as a partial agonist of GPR55 alone and enhances LPI signaling. GPR55 has been implicated in pain transmission, and thus our results suggest that this receptor may be responsible for some of the antinociceptive actions of certain CB2 receptor ligands. The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.  相似文献   

17.
Mercury, especially methylmercury (MeHg), is implicated in the etiology of cardiovascular diseases. Earlier, we have reported that MeHg induces phospholipase D (PLD) activation through oxidative stress and thiol-redox alteration. Hence, we investigated the mechanism of the MeHg-induced PLD activation through the upstream regulation by phospholipase A2 (PLA2) and lipid oxygenases such as cyclooxygenase (COX) and lipoxygenase (LOX) in the bovine pulmonary artery endothelial cells (BPAECs). Our results showed that MeHg significantly activated both PLA2 (release of [3H]arachidonic acid, AA) and PLD (formation of [32P]phosphatidylbutanol) in BPAECs in dose- (0–10 μM) and time-dependent (0–60 min) fashion. The cPLA2-specific inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3), significantly attenuated the MeHg-induced [3H]AA release in ECs. MeHg-induced PLD activation was also inhibited by AACOCF3 and the COX- and LOX-specific inhibitors. MeHg also induced the formation of COX- and LOX-catalyzed eicosanoids in ECs. MeHg-induced cytotoxicity (based on lactate dehydrogenase release) was protected by PLA2-, COX-, and LOX-specific inhibitors and 1-butanol, the PLD-generated PA quencher. For the first time, our studies showed that MeHg activated PLD in vascular ECs through the upstream action of cPLA2 and the COX- and LOX-generated eicosanoids. These results offered insights into the mechanism(s) of the MeHg-mediated vascular endothelial cell lipid signaling as an underlying cause of mercury-induced cardiovascular diseases.  相似文献   

18.
We have investigated pathways of lipid metabolism in boar spermatozoa sperm cells incubated for up to 3 days with [14C]palmitic acid, [14C]glycerol, [14C]choline, or [14C]arachidonic acid or incorporated these precursors into diglycerides and/or phospholipids. When spermatozoa were incubated with [14C]palmitic acid or [14C]glycerol, there was first an incorporation into phosphatidic acid, followed by labelling of 1,2-diacylglycerol (DAG) and then phosphatidyl-choline (PC). This indicates that the de novo pathway of phospholipid synthesis is active in these cells. However, not all DAG was converted to PC. A pool of di-saturated DAG, which represented a considerable proportion of the high basal levels of DAG, accumulated the majority of label. Another DAG pool, containing saturated fatty acids in position 1 and unsaturated fatty acids in position 2 and representing the remaining basal DAG, was in equilibrium with PC. When spermatozoa were incubated with [14C]arachidonic acid, there was a considerable incorporation of label into PC, which indicates the presence of an active deacylation/reacylation cycle. The behaviour of certain lipid pools varied depending on the temperature at which spermatozoa were incubated. For example, in the presence of [14C]palmitic acid or [14C]arachidonic acid, there was more incorporation of label into PC when spermatozoa were incubated at 25°C than when incubated at 17°C. Taken together, these results indicate that spermatozoa have an active lipid synthetic capacity. It may therefore be possible to design methods to evaluate the metabolic activity of boar spermatozoa based on the incorporation of lipid precursors under standardized conditions. Mol. Reprod. Dev. 47:105–112, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

20.
Plasma membrane lipid metabolism of petunia petals during senescence   总被引:3,自引:0,他引:3  
The specific activities of 6 enzymes, which are involved in the synthesis and catabolism of membrane lipids, were monitored in plasma membranes isolated from petunia petals during senescence. These included phosphatidylinositol (PI) kinase (EC 2.7.1.67), phosphatidylinositol monophosphate (PIP) kinase (EC 2.7.1.68). diacylglycerol (DAG) kinase (EC 2.7.1.107), phospholipase A (EC 3.1.1.4) and PIP- and PIP2-phospholipase C˙(EC 3.1.4.3). Using endogenous substrate, the [32P]PA and [32P]PIP2 formation increased to 140 and 200%, respectively, of the day 1 value by 4 days after harvest. There was no significant change in [32P]PIP formation during the same time period. On the fifth day the petals wilted and the [32P]PA and [32P]PIP formation declined significantly. In contrast, the [32P]PIP2 formation remained high in the day 5 petals. When the lipid kinase activities were assayed in the membranes in the presence of exogenous substrate the specific activity of all of the enzymes increased. and the changes in [32P]PA production over the 5-day period were similar to those observed with endogenous substrate. When exogenous PI and PIP were added, however, there was no longer an increase in [32P]PIP2 formation by plasma membranes of day 4 petals and [32P]PIP formation significantly decreased. The relative decrease in PIP and PIP2 formation by day 4 membranes when exogenous substrate was added may have resulted from differences in the lipase activities in the day 1 and day 4 membranes. The plasma membrane A-type phospholipase activity increased throughout the 5 day period, and phospholipase C activity increased two-fold between day 1 and day 4. Such changes in the metabolism of the plasma membrane lipids during flower senescence would affect the ability of the petals to use inositol phospholipid-based signal transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号